R

10. 7. 1990 |
o NAGE PROUDLY PRESENTS ANOTHER STUNNING RELEASE:
| B |
AAAA M nn N 00000000 $558SS
AMMAAA | MNANAN NANNAN 0000 0000 SSSS SSSS
 AAAAAAAA MliMllMMMMMMMllMMil 0000 0000 SSSS SSS
AMA AMAA NNNN NOOOE nnAN- 0000 0000 SSSSSSS
MMM AAdA NN mnn 00000000 $55555555

THE GREAT 0 R

ThanxtoMr. Spaghellod/Accessionforthetypin work!

'!(Usinq CygnusEd Professional Release 11)

Wt hout the gfeat hel p of

Stranger/lmaqe

you woudn ' t ; havethi.sFi 1e/Print. inyour hands. He de 1 ivered nme
the original! manual, and prom sed to spread the Final Version of

i this file all around the world.

-...Try the NO-1 BBS in Finland, give a call to |IMACE HQ -
—Pirates Cove at: +358-0-802 4389 (HST DS, 121MB, 24H) —
- i
How was it all jdone? e

RImIDITIIAR W N IS moma e

AMOS Basic was designed and progrgammed by Francois Lionet, Hs clever
ideas and inspirational work have produced what we feel to be by far
the best high-1evel programm ng |anguage available on the amiga to

dat e. . g ' '

AMOS was devel olped using the following prograns;

_ DEVPAC.Il Assenbler - H Soft *
\ 's Deluxe paint IlIl - Electronic Arts
Pix Mate - Progressive Peripherals 8: Software
. Cross-Dos - Consultron
,. .- Mni Ofice Professional Communications - Database Software

Mandarin Software would like to thank the following people for their
kind help during the devel opment of AMOSs

A3.listair Brirnble, Aaron and Adam Fothergill of Shadow Software,, Peter
H ckman, R co Hol mes, Commobdre WK for the international keyboard
layouts (anthe Aniga)., Conmbdore Francef art hehelpwi t ht he A1000
problem, 17-Bit Software for sanples and denos, Martyn Brown for fonts
and support., Virus Free? FD for Soundtracker, Sinon Cook ‘for his
constructivecommentsandbugfindi ng, Lee, Alex, allother AIIOS

devel opers for their kind, help and all of you who have waited patienly

B

for this software. W hope, like us, you feel it was well worth the

wait.

This manual (the original ,, not
WiteNow on the Apple Macintosh

Oopyri ght Noti ce

this ASCII file) was witten using
and paged up with Page Maker.

Am)s W|II enable you to create some very inpressive software. It is
vary inportant that you acknow edge AMOS in your programs using a

phrase such as "Witten by John
include the AMOS Sprite.

Smith using AMOS", and., where possi bl e,

If your program is released commercially, the words '
AMOS ¢ 1990 Mandarin/Jawx " nust be included on the back of the
packaging and in the printer instructions.

CONTENTS
1. 1 NTRODUCTI ON
Dedicationcecenuawnannsunnn D baanans i
Foreword seonncamaenaa g Wmamns &
2s CETTI NG STARTED
Backup AMOS now . . .3
Installing AMOS on a S|ngle floppy system 3
Installing AMOS on a double floppy system 4
Installing AMOS onto a hard disc .,,uww... 4
Loading AMOS BasSiCcovviiiiiiiiinnininnns 4
AMOS tutorial. -5
Loading a program _________________ o 5
Deleting a program. 6
Direct mode ... 6
Animation! . 7
Listing the sprite files | 7
Loading a sprite file 7
Setting the sprite colours8
Displaying a sprite . *. ,| 8
Animating a sprite8
Moving a sprite ... 8
Musi ¢ maestro! .. »«, 9
The journey continues. . 9
“Hints and tips 9
3s THE EDITOR
The menu window 11
The -information line . . . | owme ., o 11
The editor window 12
- An introduction to direct mode Py ep & 13
Loading a program 14
The AMOS file selector ...,...., 4w w .n, 14
Saving a Basic program.. 15
Scrolling thourgh your files15
Changing the current drive o, o 15
Changing the directory | N X
Setting the search path 15

S o ST

Using the fils selector 16

Editor tutorial. == 16
Scrolling through a listing Qoo 16
Label / Procedure searches - 17
Fol ding a procedure definition 18
Search/Replace 18
Finding an item. o 18
Replace 18
Qut and Paste Coee 19
Mul tiple programs and accessories 19

Miltiple progransccccvvun... 19
ACCESSOries 20
Direct Mde 21

' Direct node editor keys» 21
~ The menu window 22
- Default menu.. .o 22
The systemmenu. 24
The blocks menu,..», .,.« T » ... 25
The search menu o 26
Keyboard macros 28
Conserving memory. 30

_ Inside accessories. L 30

The HELP accessoryiiiiiiiiiiinnnn. 32

The editor control keys,.,.. 32
Special keys ... 33
Editing Keys 33
The cursor arrows 33
Programcontrol 33
Cut and Paste L 34
Harks...l.....) e R
Search/Replace 34
Tabs. ... o 34
BASI C PRI NCI PLES

Variables ... 35

Types of variables ,.,.,............... . o m e .. 35
Integers N 1]
Real numbers 36
String variables 36

Gving a variable a value 36

Arrays. 36

Constants. . . 37

Arithmetic operations . . . W ., 38

String operations 40

Parameters 41

Line numbers and labels 41
Labels . . . 41

Procedures., 42
Local and global variables 43
Parameters and procedures 44
Shared variables 45
Returning values froma procedure 46
Leaving a procedure -y
Local DATA statements................ ... S T . 47
Hnts and tips, 47

Menory Banks. 48
Types of nemory bank ..,,,, 48
Deleting banks 50
Bank parameter functions 50
Loading and saving banks.51

Menory- fragmentation » ” ¥

Fi ndi ng space for vyour va}iébles __________________ R X

5s SI'RING FUNCTI ONS

Array operations. e] b9
6s GRAPHI CS
Colour. . . - 61
Li ne drawi ng comands — - e »» 63
Line types [67
Filled shapes 6/
Fi 11 types ... 68
Witing styles /0
Advanced techniqu.es i, 71
7: CONTROL STRUCTURES
Junmps, Tests etcC. ... ['5
Error handling 83
8: TEXT & W NDOWS
Text attributes 87
Cursor functions 89
Conversion functions i 91
Cursor commands. T 92
Text input/output 96
Advanced text commands. 98
CWNAOWS. . 99
Slider bars 104
Fonts e 105
Graphic text. e 105
Instal 1ing new fonts _________________________ 109

Trouble shooting ., ,.. 109

9s MATHS COMMANDS

Trigononmetric functions| 11
" Standard mat hematical functions 114
- Creating random sequences. 115
Manupul ating numbers. 116
10: SCREENS
Thedef aul t screen...... e e e m e 119
o« Def ining ascreen .., 119
~ Special screen nodes 121
“- Extrahalf -bright mode (EHB) .. ., . ., w122
Hold and nodigy node (HAM 122
Loading a screen ,. ,. e 124
Saving a screen 124
Moving a SCreen 125
Screen control commands 127
~ Defining the screen colours e 131
Clearing the screen 131
Manupu latingthecontentsofascreen. 132

-Scrolling the screen. 133

Screen swi tching. 134
Screen Synchronization ,.,,,, 136
Special effects,, 136
Changing the copper list - 142
Hntsandtips. ., »,. 144

us HARDWRE SPRI TES

The sprite commandsccoiiiininnn.n. 145
Computed sprites e 146
Creating an i ndi vidual hardware sprlte e 149
The? spri +<? pal»H:p , -, w - + SO

Controlling sprites ,,..... 15b1
Conversion functions.....153

12s BUTTER OBJECTS
The bob control commands o* ..o 161
13: OBJECT CONTROL :
The nmouse pointer- s ----165
Reading the joystick e 16/
Deleting col lisions 169
with a sprite s 169
with a bob . e oo - - 170
between sprites and bobs | 210
with ret.angul.ar blocks 1/2
Bob priority oo -..-> 174
M scel | aneous commands ~17b
14; ANAL
ANAL, principies 16
ANAL tutorial 177
Moving an object 177
Animation 179
Simple loops. 180
Variables and expressions. 181
Internal registers. 181
External registers 181
Special registers 182
Operators ., ..oooooey e . 182
Making decisions 183
CGenerating an attack wave for a game 184
Recording a conplex novement sequence 185
ANAL commends. . .. 187
ANAL functions 191
Controlling ANAL programs from Basic 193
ANAL errorscovvviniiinnnnn Boreeeens noeee & g»»,. 195
Error messages. 196
Animation channels 197
Animating a conmputed sprite ., 197
Animating a bob .,..... e 197
Moving a screen 198
Hardware scrol ling 198
Changing the screen size .. . ,........... , 19D
Rai NDOWS ... 199
Ad van cee techniques 199
The Autotest system. 199
Autotest commands. 200
Inside Autotest 201
- Timing considerations .,.....,. .. muerrmnnnes, 201
Beating the 16 object limt .,,,.» 202
STOS conpatible animation commands. .= | A |

15: BACKGROUND GRAPHI CS
lconscoiih i 207

Screen blocks. b, 209
16s MENUS
Using a menu, 212
Creating a simple menu 212
Setting the title line 212
Reading a simple menu e e .. 214
Advanced menues features , ., ,.......... 214
The menu hierarchy ,. o m e me 215
thu confrol cbhﬁahdéiif ff' ,;“vvﬂi fi‘ 1__220

Embedded menu commandsl 222

Alternative menu styles — . » 227
iioveable menus.229
Moving a menu within a program = 231
Di splayinganenuatt hecursorposition.. 232
17s SOUND AND MUSI C _
Sinple sound effects . . 233
Sound channels. 234
Sampled sound = 235
Creating a sanple bank . . » 23/
MIUSI C. .. 238
Playing a note 240
Waveforms and envelopes 241
Speech .. 246
Filter effects. 248
18: THE KEYBOARD
[nput/Qutput ... 252
19; OTHER COMMANDS 254
20: DI SC ACCESS
Drives and volUMBS . «,...,, »,,», 260
Drives .ccvvviiir e D0 [V R »... 260
Volumes. ... e 260
Logi cal devices ,...,,» . & ianes 261
Cross DOS. 261
Dir changing . . . e ... 262
Common disc operations ,»»,,.,., , .. 265
Selecting a file ..., . . 266
Running an AMOS program from disc: . . . | 266
Checking for the existence of a file ,. ., 267
Disc files 268
* Sequential files . . . e e ., 268
Randomaccess files ..., 271
The printer. . wa . 274
External devices e 274
21; SCREEN COMPACTION 276
22s MACI HNE LEVEL | NSTRUCTI ONS
Nunmber conversion, e e 279
Memory mani pul ation ., , . . 279
Bi twi se operations . .. 282
Using assenmbly language 285
Accessing the system libraries .,.,..... . 287
Inside AMOS BasicC». ,..... e . 288
23: COMMAND I NDEX] 289

e ——

. e

. . 1: | NTRODUCTI ON

\NEL COVE to the ekéiting world of AMOS - The Creator! As you know, the
Ariga is a truly amazing conputer. For the first time, all that power
is at your fingertips. ' '

In Septenper 1988, Mandarin Software released STCS Basic for ST. This
made history as the first programmng |anguage to reach nunber one in
the ST Gallup games charts! Now STOS has been rewitten from the gound
up to produce AMOS Basic for the Amiga. AMOS Basic includes a vast
range of over 500 commands - many of which are staggeringly powerful.
You can, for instance, bounce a screen,, or animate a sprite using just
asingleBasicinstruction.

AMOS is not just another version of Basic - it's a dedicated games
creation system which comes with its own built-in Animation Language
(AMAL). AMAL programs are executed 50 times a second using a powerful
interrupt system They can be used to generate anything from the attack
waves in an arcade game, to a silky-smooth hardware scrolling efect. At
the same time, your Basic program can be doing something completely
different! :

What ever you knowl edge of programmi ng, AMOS has something to offer
you. If you have newer written a game before, the prospect of creating
your first game may be quite daunting. But do bear in mnd that many of
the all-time classics ara- uncomplicated programs with one or two

original features -- just look at Tetris for exanple. The strength of
your game wll depend on the quality of your ideas, and not just your
programming skill. Wth a little help fromAMOS, you'll be able to

produce professional-1ooking games with just a fraction of the nornal
effort. Al you really need is inagination.

If you've witten a gane in AMOS basic,, don't keep it to yourself.
Mandarin Software is very keen to publish any program witten using
AMOS. Don't worry if your programming is a little rough. If your ideas
are good enough, you could have a real future as a professional ganes
witer. So please send us your prograns,. Mandarin would al so be
delighted to hear your commrents or suggestions for the AMOS system.
Several features in AMOS were taken directly from the ideas which were
sent to us from existing STOS users. Address your correspondence for
the attention of R chard Manner, Devel opnent Manager, Mandarin
Software, Adlington Park, Adlington, Macclesfield SK10 4NP,

211 GETTI NG STARTED
AMOS Basic is a truly remarkable package, capable of creating games
which were previously beyond your wildest dreams., All this powerfu
«features which make the Amiga so irresistible have been incorporated
into this amazing system Wth help of AMOS Basic you can develop
programs which would tax the skills of even the most expert assembly
| anguage programmer. : : o

You can for instance, effortlessly animate up to 56 hardware sprites
simullaneously! Thi.sisarealachievement,especiallywhenyau
consider that the Amiga's hardware only actually provides you with
ei ght.

[f you need even more action on the screen, you can use the Amiga's
blitter chip as well. Blitter objects can be created in any graphics
mode you like, including HAM The only limt to the riumber of bobs on
the screenistheamauntofavai lableinemory

Any combination of the Amiga's graphics modes can be displayed on the
screen at once. Hardware scrolling isn't jsut possible., it's easy
There's a built-in SCREEN OFFSET command which allows you to perform
the entire process directly.

In fact, the only hard part of AMOS Basic is knowing where to start
AMOS supports over 500 Basic commands, and if you're never used Basic
before, you may feel a little overawed by the sheer scale of this _
system. When you're in unfam/liar territory,, it's always useful to have
a *GUIDE* (Thanks to me!, Mr.Spaghetto ;e to show you around and point
out some of the notable landmarks,, That's the purpose of this chapter

Backup AMOS Know* !

Before continuing however, it's vital that you back up the entire AMOS
Basic package on fresh discs. This will safeguard your copy of AMOS
against accidental mistakes. You'll now be able to play around with the
system as much as you like, without, the risk of destroying something

i mportant.

If the worst comes to the worst,, we at Mandarin will be happy to
replace your disc for a nominal handing charge. But you'll obviously be
deprivedof AMOSBasi cwhi leit'sheingre-duplicated,

The installation procedure varies depending on your precies set-up
but it can usually be accomplished in a matter of mnutes,.

Hdw to backup?
[f you have got this Ascii file into your hands,, you propably also
have some cool copy-prog,, for example? X-Copy,, I)--Copy or other...

Place the originals into a safe place and use the fresh copies ...

Loadihg AMOS Basi ¢

As you might expect. AIlOfi Basic car, bz executed in A uarioty ,-,-(=
different ways. You can, for instance, load AMOS directly from the

Wor kbench by selecting its icon with the left mouse button. Once you've
entered AMOS in this way., you will be able to flick back and foth to

w

the Workbench by pressing the Amiga and A keys from the keyboard.

In practive however, the Workbench consunes val uabl e mermory which
woul d' be better used to hold your Basic prograns. So if you're a
serious user, you'll propably prefer to boot up AMOS as part of your
normal start-up sequence. This will allow you to achieve the maxi num
possible results from the AMOS system

To load AMOS Basics

* Turn off your Amga and wait for about ten sees.

* Place a backup of the AMXS program disc (disc 1) into DFGs

* Now switch on your Amiga. AMOS will load into menory
autonatically.,

% Ht a key to renpve the information box and thus enter the
AMDS system ' C :

AMOS tutorial

The first thing you'll see when you enter AMOS Basic is the editor
wi ndow. This is extrenely easy to use, and if you've a little previous
experience with conputers it should be self-explanatory. Feel free to

experiment as nuch as you like. The AMOS editor is quite intelligent,

and you Are unlikely to make any serious m stakes. : -

Now you' ve seen the editor window, It's tine to explore sone of t he, -

features that nake AMOS Basic: really stand out from the crowd. o

Loadingaprogram
We' Il start off by showing you how you can load one of the terrific
games from the AMOS data disc. We'll take the Number Leap game as an
examples - . L N
* Insert the Al _DATA disc into drive DFGs
* Hold down an Amiga key on the keyboard and press "L",, This wll
bring up a standard file selector on the screen.
* dick on the disc drice label DFO to inform AMOS that you have
changed the disc
t At the centre of the file selector there will be a list of
prograns which can be |oaded into AMOS Basi c.
* To select the Nunber Leap program just position the nouse pointer
over the file: o

Minber _j eap, AMOS - .
The file you. have chosen will be highlighted accordingly.

* (nce you've chosen your file, you can load it by clicking twce
on the left nouse button. Your game will now be entered from the
AMOS DATA disc and you will be returned to the original editor-
screen. Thecontents af t hi s windoww 11 beupdatedtodisplay
your new program |isting.

* You can run this program by selecting the RUN button from the main
menu area (or hit Fl if you're feeling |azy).

The editor screen will now disappear conpletely and Nunber Leap wll
be executed in front of your eyes. After you've played with this game
to your satisfaction, you cn exit to AMOS Basic by pressing the CTRL
and C simultaneously.

o

o Bt e L

CTRL+C provides an effective way of breaking into the vast nmajority
of AMOS prograns. It can be disabled from w thin your program using a
BREAK COFF command for extra security. Wen the program has been broken
into yu can flick straight back to the editor by pressing the Spacebar
key from the keyboard. ' :

Del eting a program

Now that we've finished with the Nunber Leap program we can erase it
fromnenory with the NEW command. You won't find this option on the x0T
main menu, as it's been placed in a separate SYSTEM nenu. This can be
brought into view by noving the nouse pointer over the menu w ndow and
hol di ng down the right nouse button. B :

To del ete a prograns s *

* Ensure the nouse pointer is over is over the menu area.

* Hold the Right nmouse button down to bring up the SYSTEM nenu,.

* While the button is depressed, nove the pointer over the NEW option
and select it with the Left nouse key. Alternatively, you can
execute this option directly from the keyboard by pressing
Shi ft +F9.

t Type Y to confirm the operation or N to abort. :

* |f the current program hasn't been saved, you'll been asked whether
to store it onto the disc. If you select the YES option, you'll
be presented with an AMCS file selector,, O herw se your program

will be totally erased. .-e.-o:,
Direct mode . 3 R . . S . *
W'll now have a quick look at the direct node. This forms the centre

of the AMOS Basic package and allows you to experiment wth your
routines and inmrediately observe, the effects.

It's inmportant to recognize that all the screens, sprites, and nusic:
defined in your program are conpletely separate from the Editor w ndow.
So no matter what you do in direct node, you'll be able to return to
your listing with just a single keypress,,

*Enter di rect nmode by pressi ng ESCa pe, The edi tor wi ndowwi 1l sli de
away and you'll be presented with the main program display.

Towards the bottom of this area will be a snall screen which can be
used to enter your direct node conmands. Try typing the follow ng |ine,
pressing Return to "execute". :

Print "Your name" oLy

Insert your name between the quotes to print your nanes on the Amiga's
screen. Now press the UP and DOMN arrows from the keyboard to nove the
wi ndow around the display area. As you can see, the Direct node w ndow
is totally independent of the main program screen,,

Ani mation i B o : .

So much for the Direct (node. Let's experiment with sone of the AMOS
Ve o

to load a set of sprite images into nmenory. Stay in direct node and

enter the indented lines in bold as you conme to them.

P .

]

This prints a line like: o .

Listing the sprite files

V' || begln by I|st|ng all the available sprite files to the Amga's

screen. .
* Ensure that the AMOS DATA disc is still in the DFC
* Display the disc file directory with the lines

Dir "AMOS DATAsSprites/"

This will display the sprite files we've supplied on the AMOS data
disc. These files contain all the imges which are used in the various
exanmpl e programs. You can create your own images using the Sprlte
definer accessory on the ANOS Program disc. . '

The sprite definer incorporates a host of powerful drawing features
which nmake it extremely easy to generate prof essional -quality anination
sequences in your games. :

Loadi ng a spr|te f|Ie
W can now | oad these sprites using the LOAD command,, The sprites wll
load into a special nenory bank so don't except to see any sprites to
appear yet! Let's enter the sprites used by the Number Leap game with
the follo w ng co mma nds

Load "AHOS . DATAsSprites/ Frog_Spri t es. abk"
If you make a mistake, hit Fl to get your previous line,, This line can
be then edited using the normal cursor keys and may be re-executed by
pressing Return.

Now let's also load up a music file using a simlar load command:

Load "AMSS. JDATA Sprites/ Funkey. abk" . WA
In order to check whether the sprites and music have been succesfully
| oaded into menmory, we'll call up the LISTBAMK instruction like so:
Listbank |

1 - Sprites S;*0682B0 L:000040 ' e S
3 - Music Ss*043878 LSOOBIFE ~ " ces:etes

Don't worry if the nunbers do not correspond as they will change
depending on the available nenory. The nunber of sprites we've just
| oaded canber etur neddirecllyw t hthe LENGTHf uncti on,

Print Length(l) : : B : .
(results 64) ' : '

Settlng the spr|te col ours

Each set of sprite images has its own set of colour values stored on
the disc. Since these can be very different from your current screen
colours, it's useful to be able? -to GRAB the colours from the sprite
bank and copy thein in to an existing. screen,, This can be acconmp 1 ished
with the GET SPRITE PALETTE command. Enter the lines

CGet Sprite Palette

Al the colours in the main program screen will change immediately, but
the direct nmode window will be conpletely unaffected because it's been
assigned its ow separate |ist of colour values by the AMOS system

Dlsplay| ng a sprlte

Spr|tes can be dlsplayed anywhere on the screen using a 5|mple AMOS
Basicspitecommand. Here'sanexamples

Sprite 8,129, 50,62 = e

Aninating a sprite L .

Let's animate this object usi ng The "Alos Animation Language". AMAL is
a unique animtion system which can be used to nove or an| mat e your
objects at incredible speed.

Note that when you"re entering the follow ng exanple prograns,, it's
essential to type each line fcexactly* as its appreas in the listing, as
ot herwi se you nMy get an unexpected syntax error,,

Sprite 8,129,150,62 = - I
Amal 8, "Aniift ‘0, (62,5)(63,5)(64,5):" s Amal On

The program above animates a small duck on the screen, Wilst it's
being nmanupul ated,, the sprite en be nmoved around using the SPRITE
command. Exanpl es

Sprite 8,300,50, o+ B

l\/bw ng a sprlte

Now for some movenent!

Sprite 8,129,150,62 : A* = "AnimO, (62,5)(63,5)(64,5);"
A*=A*+"Loop: Mbve 320, 0, 100; Mve --320,0,, .100 Junp Loop"
Al 8 A : Aml On

This programs animates the duck and nmoves it back and forth across the
screen, using.justt hreelines!

Al though the instructions between the quotes may look |ike Basic,
they're actually witten in AVAL. Al AMAL programs Are executed 50
times a second and they can be exploited to produce silky smoth
animation effects independently of your Basic prograns.

Just to prove how amazing AMAL really is,, hit ESC to jurﬁ) back to the
Basic editor. After a few nonents;, return to direct node. Your sprite

will still be bouncing accross the screen as if nothing had happened!
Musi c maestro! e
For a finale, let's play the music! Ensure you're st|II in direct mode,

turn UD the uolumra an ynuf mani.+.al" .aid st;pt -l ,.,,;,. T -9-,..,

MJSI C command |ike so:

W

o

Misic 1
By the way, you can stop the nusic: with the commands

Music Off

Thejoyrneycontinues

Hopefully, you"ll now have a pretty good idea of what AMOS Basic can
achieve. But so fat we've only looked at a tiny fraction of AMOS
Basic's power,, As you experinent with the AMOS package, you'll quickly
di scover a whole new world, full of exciting possibilities.. :

AMOS Basic can't, of course, transformyau into an expert games _
programmer overnight. Like any programm ng |anguage, it does take a
[ittle time to famliarise yourself with the entire repertoire of
commands. We'll therefore end.this section with a few guidelines to
hel p you on your way. '

Hints and tips
% The best way to learn about AMOS is to create small programs to
animte sprites,, scroll screens or generate hi-score tables. Once
you've created a little confidence,, you'll then be able to incorporate
these routines into an actual game.

% Don't be overawed by the sheer size of the AMOS Basic |anguage. In
practive, you can achieve terrific effects with only a tiny
fraction of the 500 or so commands available from AMOS, Start by
mastering just a couple of instructions such as SPRITE and BB, and
then work slowy through the various sections. As you progress, you'll
gradual 'y build-up a detailed know edge of the AMOS system

% Al though we've attenpted to make this package as easy to use as
possible, a thorough groundging of the general principles of Basic
progranming is invaluable. If you' re new to Basic, you may find it
hel pful to purchase an introductory text such as "Alcock's Illustrating
Basic. (Canbridge University Press.)

* Plan your games car ef ully on pape r, 11" s amazing how man y problems 10

can be conpletely avoided at the early design stages. Never attenpt
to tackle really large projects without prior preparation. It's the
easiest way to get permanently |ost.

* When you're witing a gamé, try to concentrate on the quality of
the game play rather than the special effects. The graphics and
nusic: can always be added later if the idea's are good enough.

;) E . . -

. 3+ THE EDITOR

g e

The AMOS editor provides you with a massive range of editing
facilities,, Wt only is it exceptionally powerful, but it's also
delightfully easy to use. Al commuands can be executed either directly
from the screen,, or via an inpressive range of sinple keyboard
alternatives. It's so friendly in fact, that if you've a little
experience with conputers,, you'll propably be able to use it straight
out of the box.

One of the nost exciting features of this sytem is that the listing
is displayed conpletely separately from your nmain program screen. So
you can instantly flick from your program display to the editor w ndow
using a single keypress (ESCape). e

If you've plenty of nmenory,, it's also possible to load several
programs in AMOS Basic at a tinme. Each program can be edited totally
i ndependently, and it's possible to efforlessly switch between the
various progranms in menory by pressing just two keys from the editor.

The first thing you see after AMOS has loaded into menmory is a
standard credit screen. Applause applause! Press a key to renove this
wi ndow and enter the editor. E :

The menu win clow

At the top of the screen, there's a nenu wi ndow containing a list of
the currently available commands. This forns the gateway to all AMD S3
Basic's powerful editing features,, Command can be quickly executed by -
noving the nouse pointer over an item and hitting the left nouse
button. Each command is also assigned to a particular function key.

In addition to the nain menu, there &ns al so a nunber of other menus.
The nost inportant of these nmenus is the SYSTEM nenu. This can be
brought into view by either holding down the right nouse button, ex
pressing the shift key from the keyboard.

The SYSTEM manu contains a range of options such as LOAD, SAVE, NEW

etc. Like the main nmenu, all options can be executed using either the
left nouse button, or by pressing an appropriate function key.

The information |ine

1 L=l Oi Text=40000 Chip=9i000 Fast=0 Editsexample

The markers at the far left display the editor node ((l)nsert or
(Overwite). There's also an indication of the (L)ine and (C) oium you
Are presently editing. Alongside these narkers is a list of three
nunber s; _ S : .

TEXTs Measures the amount of nenory which has been assigned to the
editor window. This can be adjusted within Al O5 Basic using a sinple
SET BUFFER conmand from the SEARCH MENU.

CHI P; Free Chi pmrem

rASTs free Fistmem; Ul ho,, eve, - poseibln, - this will be used.)

EDIT; Displays the name of the program you are currently editing.

11

12

Initi’allly this area will totally blank, but when you load or save a
Program to disc, the new filename will be automatically entered to the
information Iine. '

The editor w ndow

The editor window forns the heart of the AMOS system and allows you to
type your Basic program listings directly from the keyboard. Al text
is inserted at the current cursor position,,. which is indicated by a
flashinghori zont alli ne.

At the start of your session, the cursor will always be placed at the
top left hand corner of the editing window. It can be noved around the
current line using the left and right cursor Kkeys. ' '

Your line can be edited on a character by character basis using the
Del ete and Backspace keys., Delete erases the character inmediately
underneath the cursor, whereas Backspace deletes the character to the .
left of this cursor. As an exanple, type the lines

print "AMOS" ' . ..

Wen you press Return, your new line will be entered into AMOS Basic.
Anything AMOS recognices as a comand wll be inmediately converted to
special format. Al Basic commands begin with a Capital letter and
continue in |ower case. So the previous line will be displayed ass

Print "AMOS" ! | - S

Simlarly, all AMOS variables and procedures are displayed in CAPI TALS.
This lets you quickly check whether you've made a nistake in one of
your program lines,, Supposing for instance, you'd entered a line like:

inpit "What's your name;";name$

This would be displayed ass S - o S

Inpit "What's your name;"; NAME*

Since INPIT is in UPPER case, it's inmediately obvious that you've made

an error of some sort,,

k- Now for a little fun. Mve the cursor under the Print command you
entered a few nonents ago and type in the following lines of Basic
I nstructions. '

centre "<Touch 'n' Type Deno>

do o
x*=inkey* : if x* <> "" then print x* o . .

| cop) . ceee o

Don"t forget to press the Return key after each and every line,, Ww
move the cursor through your new program using the arrow keys,, Finally,,
press the FI to run this program

The EDI TOR W NDOW wi || di sappear and a separate PROGRAM display will
flip into place. The program now expects you to type in some text from
the keyboard. As you can see, the program screen has its own
i ndependent cursor line,, This is totally separate to the one used by
the editor. So you can play about as much as you l|ike, without changing
yourcurrentedllingposition,

13

After you've finished,, press CTRL+C to abort the program A thin line
will now be displayed over the screen. This can noved using the up ano
down cursor arrows,,

Program Interr'upted at line 4
>»Loop

Pressing the space bar at this point would return you back to editor.
But since we've already seen the editor, let's have a brief look at the
Direct node instead. Ht the ESCape key to flip this nmbde into place.

An introduction to Direct m)de

DI RECT m)de provi des you W|th an easy way of testing your Basic
programs. For the tine being, we'll examne just a couple? of its nore
interestingfeatures:

Al direct node commands are entered into a special screen which is
conpletely inde pen tent, fromthe program di splay. You can nove this
screen up or down using the arrow keys.

At the top of the window, there's a list of 20 function key-
assi gnnments. These represent a list of conmands which have been
previously assigned to the various function keys. They can be accessed
by hitting the left or right Amga--keys in conbination with one of the
various function keys,,

Wil st you're in direct nmode, you can execute any Basic: instructions
you like. The only exceptions are things like |oops or procedures. As
with the editor, all conmmands should be entered into the conputér by
pressing the Return key,, Here are some exanples:

Print 42 B) : . .
ANSVERS. Print AI\ISV‘ER*’? DR . - .o
Curs Off . L -
Cl ose Workbench (Saves around 40k but ABORTS nulti -

tasking operations!)

[t's inportant to recognize that no matter what you do in direct node,
there will be absolutely no effect on the current program listing. So
you can nmess about to your heart's content, with no risk of deleting
something in your Basic program, - _ coee e

[t's now time to return to the Editor window,, So wave a fond farewell
to Direct mode, and enter the editor by pressing ESCape.

-

Loading a program : o . 14
W' Il now discuss the various procedures for |oading and saving your

prograns on the disc. As usual, these options can be executed either

from the MENU wi ndow or using a range of sinple two-key conmands from

the editor. The fastest way to load a programis to hold down either of

Ami ga keys, and press the letter L.

You'll now be presented with the standard AMOS file selector w ndow,.
Nowadays, file selectors have become a famliar part of nost packages
available on the Amiga. So if you' ve used one before, the AlCS system
will hold no real surprises,, However, since the file-selector is such

an integral part of AMOS Basic, it's well worth explaining it in sone
det ai Xe

e

The AMOS file selector

Selecting a file fromthe disc couldn't be easier. Sinply nove the
cursor over the required filenane so that it's highlighted in reversed
text. To load this file into nenory, click twice on the |left npuse
button. Aternatively,, you can enter the nane straight fromthe
keyboard, and just press Return,, ' :

If you make a mistake, and wish to leave the selector without I|oading
a file, nove the npbuse over the Quit button and select it with the |eft
button!. AMOS will abort your operation and display a "Wt Done" mnessage
on the infornation |ine.

As an exanple, place you COPY of the AMOS program disc into the
internal drive and press AMGA+L to load a file. If you' ve been
following out tutorial, AMOS will give you the option of saving the
existing program first. Unless you' ve nade any interesting changes,,
press "N' to anter the file-selector. OQherw se, see "saving a progran
for further instructions.

Wien the file selector appears, look out for a file with the nane

"Hthere, . A1C8' , Once you've found it, load it. The following listing
will be loaded to anpbs basic™ : _ . .

Rem H there AHOS user:: ' ' .

ds 0 : RemClear the sscreen Wth colour zero
Do

Rem get some random numbers

X=Rnd(320) sY=Rnd(200]i sT=Rnd (15) : P=Rnd(15)

Ink | , P; Remadd a 3.ittle col our

Text X, Y,"H therel" s Rem graphic text
Loop

Move the text cursor over the text "H There!" and insert you own
nessage- Mdw press F to run the program, The program display wll
rapidly fill up with do?.ens of copies of your text,, Press CIRL+C to
exi t f ramt hi sroutine.

Saving & Basic program S S ' - 15

program onto the disc. If you feel like a change, hold down the right
nouse key and click on the "Save as" option from the SYSTEM nenu with
the left button, Either way you'll junp straight back to the AIG file
sel ector w ndow, .

You should now enter the nane of your new file straight from the
keyboard. As you type, your letters will appear in a snmall w ndow at
the bottom of the selector. Like the editor, there's a cursor at the
current typing position. This cursor can be noved around using all the
normal editing keys Finally, press Return to save your prog to disc.

rolling through your files

If your disc is reasonably full, the standard selection wi ndow won't be
able to list the entire contents of your disc at once. You can page

through the listing using the scroll bar to the left of the selection
wi ndow

Changi ng t he current drive

To the rlght of the f|Ie wrndow, there's a list of drive nanes,, The
preci se contents of the window will naturally depend on the devices
you' ve connected to your Amga,, If you have several drives, you can
switch between them by si nply clicking on the appropriate nam,, (he
direHory of this drive wil now be entered into the selection w ndow,-

Changi ng the di rectory

V\hen you search through the di rectly listing, you'll discover several
names'with an asterix character "*" in front of them These are not
ofiles at all. They are entire directories in their own right. -

You can enter one of these folders by selecting themwith the left
nmouse button. You nay then choose your files directly from this folder..
Note that only the files with the current extension ".AMXS' wll be
di spl ayed.

Once you.' ve opened a directory ,, ycmcan set it as the def ault using
the SETDIR button. The next tine you enter the file selector or obtain
a directory listing with DIR, your chosen folder will be entered
automatically. Simlarly,, you can nove back to the previous directory
by clicking on the PARENT button.

Setting t he search path

Normally, AMB vv|II search for all filenanes with the extension
".AMOS", If you want to laod a file with another extension such as
.BAK, you can edit the search pattern directly. This can be aconplished
in the follow ng way.

Move the text cursor to the PATH window by pressing with the up arrow
from the keyboard. Now type your new path and hist Return. A full
description of the required syntax can be found in the section on the
D R comand.

WARNI NG ; AMOS uses its own individual search patter'ns which are very
different from the standard Am ga Dos System |If you're unsure, delete
the entire line up to the current VOLUME or DRIVE nane and hit Return.
This will present you with a full list of ALL the files on the present
di sc.

Wsing the file selector

Interestingly enough, it's also possible to call this file--selector
directly fromyour own programs. For a denonstration, enter DI RECT node
and type the following lines

Print Fselff*, 6 *)

After you've chosen a file, the nanme you' ve selected will be printed
straight onto screen! See FSEL$ for a detailed explanation of this
conmand.

Editor tutorial R N -, oo

Ve'll now have a brief |ook at some of the nore advanced editing

16

]

B

ir

features available from the AMOS editor. We'll start by loading an
example program from the disc:,. Just for a challenge, we've placed this
in a separate MANUAL folder on the AMOS progran disc.

Insert your COPY of the program disc into your Am ga'

Scrol ling through a Iisting

AI on95|de the main editor window are two "scroll bars". These allow you
to page through your listing with the mouse.

Hove the mouse pointer over the Vertical bar and hold down the left
button. Wow drag the bar down the screen. The editor window will
scrolls moothly downwards through the listing. You can also scroll the
program using the Arrow lcons at the top and bottom of this bar.
Clicking on these icons moves the line exactly one place in the
requireddirection.,

At the far bottom of the editor window, there's a horizonal scroll
bar. This can be used to nmove the window left and right in exactly the
same way. : I o . :

If you prefer to use the keyboard for your editing, you'll be pleased
to discover that there are dozens of equival ent keyboard options as
wel | . For exanpl e;

CTRL+UP Arrow shift the listing to the previous page.
CTRL. +DOM Arrow noves the listing to the next page

Al the keyboard options obey the sane basic principles. So once you've
famliarised yourself with one command, the rest are easy. A full [list
of these commands can be found towards the end of this chapter.

Now we' ve | ooked at the program |It's tine to actually change
sonet hing. Search through the program listing until you find the I|ine:

ALERT[50, "Al ert box","", "Ck", "Cancel ", 1, 2]

This calls a Basic procedure which displays a worki ng alert box on the
screen ., The f ormat of this procedure is:

ALERTLY coord, Title 1* Title 2*,Button 1$, But ton 2$, Paper,, | nk]

Let's change this alert to sonething a little nore exciting., Hove the :
cursor over the above statenent, and edit the line with the cursor keys -
so that it look like so: oMo e, - ’

ALERTL50, " Externinate!”,, "Securitate"," Yep!", "Yep!", 1, 3]

Execute the program by pressing Fi or selecting RUN from the nain nmenu.
You'll be given the unique option of stopping the |lanmest Amiga-group in
the Wrld in its tracks. Select a button with the nouse and nake your
choi cei '

In practive, you can change the title and the buttons to Iitefally
anything you like. Feel free to use this routine in your own progs.

Hopeful ly, the above exanple will have provided you with a real spur
to use procedures in your own prograns,. In order to aid you in this

task, we've built a powerful range of special editing features into the
AMOS edi tor.

Label / procedure searches 17
TF’}BB? preérg&rr;mvery long, it can be quite hard to find the starting

points of your various procedure definitions. We've therefore included

the ability to jump straight to the next procedure definition in your

program using just two keys (Alt+Arrow)

For an example, place the cursor at the start of the listing and ,
press Al't+down arrow. Your cursor will be immediately moved to the
beginning of the first procedure definition in the current program
(ALERT). You can repeat this process to jump to each procedure
definition in turn,. :

This system is not just limted to procedures of course.. It also
works equally well with Labels or line numbers. So even if you don't
needprocedures, you' 11sti 11findauseforthisfeature.

FoIdrng a procedure defrnrtron o . ; o - 18

If you build up your programs out of a list of frequently used
procedures, your lisings an easily be cluttered with the definitions of
all your various library routines

Fortunately, help is at hand. Wth a sinple call to the Fold command,
you can hide away any of your procedure definitions from your |istings.
These routines can be used in your program as normal, but their ;
definitions will be replaced by a single Procedures statement. Exanple!;

Position the cursor anywhere in the definition of ALERT and click on
the Fold/Unfold option from the menu wndow,, Bingi The contents of your
procedure will vanish into thin air! Despite this, you can run the
program with no ill effects. The only change has been in the appearance
of the listing in the editor window.

Just select Fold/Unfold agarn and your procedure wll be expanded to
it's fully glory. : - _ _ :

It's also possible to fold ALL the procedures in your program at
once. This uses an option on the SEARCH menu called "Close All". To
bringthe Sear chmenuontot hescreen,, clic: konthebullonw t ht he
same nane,, or press F5. from the keyboard. Ww select the Close Al
button to remove the procedure definitions from the current program

The effect on EXAMPLE 3.1 is dramatic! The entire program now fits
into just a single screen. So you can instantly see the procedures
we've been using in the program Each procedure definition can be
edited individually by expanding it with the Fold/Unfold button. O you
can unfold the whole program with "Open All" from the Search menu.

Search/RepIace

The search/replace commands provided by the AMOS Basic editor are
accessed through a special Search menu which can be called up either
from the menu window or by pressing function key F4.

Finding an item
Ve will continue our tutorial with a brief look at of some of the
Search/replace instructions. Let's start with the FIND command

= g

This can be executed either directly from the Search menu or using
the keys CTRL+F. Wen you select this command, you'll be asked to enter
the search string.

For exanple, hit CTRL+F and type "Remi at the pronpt, AMOS ill NOw
search for the next "Renm! statenment in your program starting from the
current cursor position. If the search is succesful, then cursor wll
be replaced over the requested item : C

The search can now be repeated from this point with the "Find Next"
option (CTRL+W. :

Supposing we wanted to change all the Rem statements in a program with
the equivalent "" characters. This could be acconplished with the
"Repl ace" command. : :

In order to use this option,, it's necessary to define the replacement
string. So the first time you call up replace, you will always be asked
to enter this string from the keyboard

Press CTRL+R, type in ' (apostophe) at the pronpt and hit the return
key to enter it into the conmputer. You now set the search string with
the "Find" option like so: :

* Press CTRL+F to select the FIND option

* Type "Rent into the information line

t The cursor will then be moved straight to the next Rein statement in
yourprogramli sting.

To change this to the replacement string and jump to the next ;
occurrence, select Replace (CTRL+R) once again. Alternatively, if the

Remis in the mddle of the line, you'll need to skip it, because AMOS
only allows you to substitute a quote for this command at the start of
a line. You can avoid this problem and junp directly to the next item

in your program using "Find Next",

Cut and paste

The AMOS Bl ock commands allow you to cut out parts of your prograns and

save them in memory for future use. Once you've created a block, you
can copy it anywhere you. like in the current listing

Here's an exanple of this feature in action. Let's take the previous
ALERT program and cut out a single procedure. Place the mouse pointer
over the first line of the INVERT procedure, and depress the right
mouse button. We can now enter this procedure into a block using the
mouse. As you nove the mouse, the selected Area will be highlighted in
reverse

We can now grab this area into memory using "Cut". When you press
CTRL+C from the keyboard, the procedure will be renoved from the
listing and stored into memory. It's now possible to paste this block
anywhere you like in your program For the purposes of our example,
move the text cursor down to the bottom of the listing, and call the
Paste optin with CTRL+P. The INVERT procedure wiil now be copied to the
current cursor position.

19

T T e S T TR

o

Mil tiple programs and accessori es

Rumple prograns

Al though AMOS only allows you to edit a single program at a tine,,
there's no limt to the nunber of progranms which can be installed into
menory, other than the ampunt of available storage space- Once you've
installed a program in this way, you can execute it straight from
Editor window with the "Fain Qther" option.

Supposing, for instance, you encounter a problem in one of your
prograns. AMOS will let you effortlessly swap your existing program
into menory so that you can freely experinment with the various
possibilities until you find a solution. After you've finished, you can
now grab your new routine into menory with the cut option,, and flick
back into your original program by pressing just two keys! The new
routine can the be pasted into position, and you can continue wth your
program as before. The ability to stop everything and try out your
ideas imediately, is incredibly valuable in practice.

Another possibility is to permanently keep all the nmost conmmondly
neede utilities such as the sprite definer or the map editor in the
menory. You can now access these utilities instantaneously,, whenever
you need them

In fact, AMOS includes a special ACCESSORY system which makes this
even easier. The utility programs can be given total access to all the
menmory banks in your main programs. So the sprite definer can grab the
i mges straight from your current program, and modify them directly,,
This tehcnuque speeds up the overall devel opnent process by an amazing
degr ee!

Let's have a quick demonstration of these facilities. Enter the .
following small prog into the editors

Print "This is program One" _ B

Boom

W can now push this program into nemory using the push command. This
is called up by pressing AM GA+P. You'll then be asked to enter the
name of your program from the information line. Type in a nane like
"Programi " at this point. The edit screen will be cleared conpletely.
The new window is totally separated from your origi nal program As a
denonstration, enter a second routine like so: :

Print "This is program Two"
Shoot o "
This program can now be executed from the edi tor w ndow using RUN (F1).
But when your return you can immediately junp to the old one with the
"Flick" option. Try pressing AM GA+F. As before,, you'll be asked to
enter a nanme for your program, Use a nane like " prograrn2" for this
purpose. The editor will now junp straight to your original program as
if by magic It's possible to repeat this process to junp back and
forth between the two programs. Each program is entirely |ndependent
and can have it's list of own banks and program screens.

So far,, we've only discussed how you can use two progranms at a tine.
However, you can actually have as many program in menory as you |ike.
These prograns can be selected individually using the "Run Qther" and
"Edit Other" options from the Menu window,, Wen you call these
commands, a special "program selector will be displayed on the screen,,

RSN PR

20

>.II

The p-ngram el ector is almst identical to the famliar AMOS file
selector/The only di'fference is that it allows you to choose a program
from memory rather than from the disc, You cas select a program by
simply highlighting it with the mouse cursor and clicking once on the
left button.

Accessories

In order to distinguish accessories from normal Basic programs, they're -~

assigned a ".ACC' extension instead of the more usual ".AMOS"
Accessories can be loaded into memory |ike any normal program using the
"Load Other" command.

Load Other presents you with a normal fileselector which can be used
to load an accessory program from the disc. After the accessory has
been installed into memory you will be returned straight back to your ,
current program. You can now run this accessory at any time using the
Run Other option from the menu window. Simply move the mouse pointer-
over your required accessory and press the left button™

Al'ternatively, you can load all the accessories from the current disc
using the Accnes/Load feature. This option can be found on the System
menu which is displayed when you hold down the right mouse button.
Accnew/ Load erases all existing accessories and loads a new set from
the current disc.

For a demonstration, place the AMOS Program disc into your drive, and
click on the Accnew/ Load button fram the System menu.

The HELF' accessory will be quickly |oaded into memory. HELP is a
special accessory because it can be called up directly by pressing the
HL E P key. We've packed this programwith all the information you " 11
need about the accessor yprograms supplied with AMOS Basic, All you

need to do, is just follow the prompts which will be displayed on the
screen.
Direct mode : ' : : !

The Direct mode window can be entered from the editor by pressing the
ESCape key at any time. As a default,, the window is displayed in the
lower half of the screen, with the program screen in the background,,

[f you run a program that changes the screen format,, displays
wi ndows,, animates sprites etc, then all this screen data will remain
intact. So you can move the DIRECT window around or flip back to the
editor to make program changes without destroying the current program
screen. This DIRECT mode window is totally independent and is displayed
onitsownfrontlevelscreen, .

Wiilst you're within direct mode you can type any line of A10S Basic
you wish.. The only commands you cannot use Are |oops and branch
instructions. You only have access to normal variables (as- distinct
from the loca bari atiles defined in a procedure).

Direct mode editor keys

. ESCape Jump to the editor window
Return -+ Executes the current line of commands
DELete ' Del ete character under cursor/ '
Backspage - Delete character to the left of the cursor

“Left Arrow * Move cursor left

i

Right Arrow Hove cursor fight

Shi ft+Left Skip a word to the Igft

Shi ft +Ri ght Skip a word to the right

Shift DELete Del etes entire line.

Shift BACK Ditto -

Hel p Displays the function key definitions to the
direct w ndow.

FI to FiO These keys renmenber the last 10 lines you've
entered from the direct node. Fl displays the

| at est one entered., 2 the second to last, etc, The menory area used by

this systemis always cleared when you return to the editor w ndow or
run one of your progranms. :

The nenu window

There S a detalled expl anation of all the options which are available
from the main menu w ndow

Def ault menu

Th|s g| ves you various commands that allow you to operate the editor,
plus give you access to the block and search nenus.

Runs the current program in nenory
Cheks the program syntax
Takes the current program andi ndent st helisting,

RN

TEST é §

) Displays the Blocks menu.
)

)

)

| NDENT (F3
BLOCKS MENU (F4
SEARCH MENU (F5) Displays the Search nenu

6) Runs a program or accessory in nenory

7) Edits a program which has previously installed into
menory using the "Load Qther" or "Accnew Load",
OVERWRITE (F8) Toggles between insert and overwite -editing nodes.
FOLD) UNFOLD (F9) Takes a procedure definition and folds it away inside

yourprogramlisting,

RUN OTHER (F
EDT OTHER (F

Normal ly, it's possible to re--open a folded procedure by repeating
the process. Place the cursor over a folded procedure and click on
FOLD/ UNFOLD. If you feel the need for extra security you can also call
up a special LOCK accessory from the AMOS Program disc, This wll ask
for a code word, and will |ock your procedures so that they can"t be
subsequenllyexaminec! fromAlOSBasic, Si mplyfoldyourrequired
proceduers and load FOLD.ACC using the LOAD OTHERS command,, Full o
instructions are included with the utility.

The real beauty of this systemis that it allows you to create whole
libraries of your routines on the disc, These can be |oaded into memory
as a separate program (See LOAD OTHER). You can now cut out the routine
you need and copy them directly into your main program So once you've
written a routine, cm can place it into a procedure and reuse it again
and again. :

If you'reintending to use this sytem there are several points to
concider.

* Whenever you fold or unfold a procedure a syntax check is made of
the entire program, If an error occurs the operatoni will not be
performed. So it's vital that you keep back-up copies of all your
procedures in Unfo

The syst em menu

2

24

B e e L e

e AR A e

b et o

m

1T

-

LOAD (SFT+F1 / AM GA+L) Loads an AMOS Basic Program
SAVE (SFli-F2 /| AM GA+S) Saves the current Basic: Program
SAVE AS (SFT+F3 / SFT+AM+S) Saves the prog w th anot her nane
HERGE (SH FT+F4) Enters the chosen prog at the current
csrs position wthout erasing the current
pr ogr am - .
MERGE ASCI| (SHI FT+F5) Merges an Ascii version of an AMOS Basic . e

program with the existing program in menory
AC. NEW LOAD (SH FT+F6) Enters a new accessory set from the disc
LOAD OTHERS (SH FT+-F7) Loads a single accessory from the disc
MEW OTHERS (SHI FT+F8) Erases accessorie(s) from nmenory
VEW (SHI FT+F9) Erases the current program from nenory
QT (SH FT+F10) Exits AMOS and returns control to the CLI

The bl ocks menu

BLOCK START (CTRL
BLOCK B\D (CTRL
BLOCK aJr (CTRL
BLOCK PASTE (CTRL
BLOCK MOVE (CTRL

B/FI) Sets the starting point for the current block
E/ F6) Defines the end of a block
C/ F2) Renoves the selected block into nmenory 24
P/ F7) Pastes the block to the current csrs position
M F3) Move the block to the current cursor position
erasing the original version conpletely
BLOCK STORE (CTRL + S/F8) Copies the block into nenory.
BLOCK HDE (CTRL + H F4) Deselectstheblockyou'vehi ghlighted
BLOCK SAVE (CTRL + F9) Saves the current block on the disc as an
AMOS program
SAVE ASCII (CTRL + F5) Stores your selected block on the disc: as
a normal text file.,
BLOOK PRINT (CTRL + FI i) Outputs the selected block to the printer

+ o+ + o+

+ o+

Thesearchmenu

FI ND (ALT + FI) Enters a string of up to 32 chars and

searches through your text until a match is
f ound.

FI ND NEXT (ALT + F2) Searches for the next match you specified

FIND TCP (ALT + F3) Searches from the top of program the string
rather than starting from the crsr position

REPLACE (ALT + F*i) Activates REPLACE node. The effect of this
commandvariesdependingwheni t'sused:

* Before a FIND
: You'll now be asked to enter the replacement

string from the keyboard

* After a FIND

If the search operation was succesful, the text and

the current cursor position will be swapped with the

replacement string. REPLACE will now jump to the next

occurrence of the search string.

REPLACE AL. (ALT + F5) Repl aces ALL copies of a word in your prog.

LOV <> UP (ALT + F6) Changes the case sensitivity used in search
conmmrands

OPEN ALL (ALT + F7) Opens all closed procedures in your program

CLCSE ALL. (ALT + F8) CLoses all procedures in your program

SET TEXT B (ALT + F9) SET TEXT BUFFER Changes the » of chars

available to hold your listings.
F10) Sets the nunber of chars which the crsr will
be moved when the user presses the TAB key,,

SET TAB (ALT

+

Keyboard nacros - o o o o n

JR——

e

= KEY*~ (define a keyboard macr o)

KEY* (n)» command t> ' e
conf fi and$)~ - KEY$(n)

KEY* assigns the contents of command* to function key nunber n. (1-20)
Keys from one to ten are accessed by pressing the function key in
conjuction with the left Aniga button. Simlarly, nunbers from eleven
onwards &e called with a right Amiga Fn comnbination.

Command* can be any string of text you wish., up to maxinum of 20
characters. There Are two special characters which are directly
interpreted by this functions

" (Al t+Quote) Generates a Return code
" (single Quote) Encloses a coment. This is only displayed in your
: key lists,. It's totally ignored by the nmacro routine.
Exanpl es:

2 Key* (1) o .

Key* (2)~-" Defaul t" - o T

Al't +F2 : : :

Key*(3) ="' Comment print" :)
In practice, this macro system can prove incredibly useful,, Ko only

can you speed up the process of entering you Basic prograns, but you
can also define a list of standard inputs for your Basic prograns.
These woul d be extrenely effective in an adventure gane., as can be seen
front the program EXAMPLE 3.2 in the MANUAL fol der. :

If you wish to generate a keypress which has no ASCII equival ent such
as up arrow,, you can optionally include a scancode in these nmacros.
This is achieved using the SCAN* function,,

=SCAN* (return a scan code for use with KEY*) e 29
x$-- Scan$(n, L", nj) .;"-__." e e '
n is the scancode of a key to be used in one of your macro definitions,

mis an optional mask which sets the special keys such as CIR, or Alt.
in the following format:

@

Key Tested Mot es ' " .
Left SHIFT

Right SHIFT

Caps Lock Either ON or OFF

CTRL. L.

Left ALT , '

Right ALT

Left AMGA Commodore key on some keyboards

Ri ght AM GA

If a bit is set to a one, then the associated button is depressed in
your macro. Exanples; :

KEY* (4) =" \Wheeei "-4Scan${%4C)
KEY$(5)="Page Up!"+Scan*(*4C, S00010000)

CLOSE WORKBENCH (cl oses the workbench)

CLOSE WORKBENCH

Cl oses the workbench screen saving around 40K of menory for your
prograns' Exanple:

Print Chip Free, Fast Free
Close Wbrkbench
Print Chip Free, Fast Free

CLOSE WORKBENCH can be executed either from direct node,, or inside oh
of your Basic, programs, A Typical program line mght be:

|f Fast Free-=0 Then Cl ose Workbench

This would check for a memory expansion and close the Workbench if
extra menory was not avail able- :

CLOSE EDITOR (close editor wi ndow)
CLOSE EDI TOR

ClosestheEdit orw ndowwhi leyour programi srunni ng, savingyoumor e
than 28K of memory. Furthermore, there's absolutely HO effect on your
program |istings!

If there"s not enough memory to reopen the wi ndow after your program
has finished, AMOS will sinply erase your current display and revert
back to the standard DEFAULT screen. You'll now be able to effortlessly
junp back to the Editor with the ESCape key as normal,, What a terrific
littieinstructioni

| nside accessories

V'l now explore the general techniques required to wite your own
accessory programs. These & & really just specialised form of the
multiple programs we discussed a little earlier. As you would expect,
they can incorporate all the standard Basic instructions. = g

Accessories are displayed directly over your current program screen
and the music, sprite, or bob animations i\r& automatically renmoved from
the screen.

Your accessory should therefore check the dimensions and type of this
screen using the SCREEN HEIGHT., SCREEN W DTH and SCREEN COLOUR commands
during its initialisation phase?,. If the current screen isn't
acceptable, you may be forced to open a new screen for the accessory
wi ndow or to erase the existing screens altogether with a DEFAULT
instruction»

Any memory banks used by your accessory are totally independent of

(L]

the main program |If it's necessary to change the banks from the
current program you can call a special BGRAB conmand, .

BGRAB (grabs the banks used by the current progran)

BGRAB b

BGRAB "borrows" a bank from the current program and copies-it into the
same bank in your accessory. If this accessory bank already exists,, it
will be totally erased,, \When the accessory returns to the editor, the
bank you have grabbed will be automatically returned to your main

program along with any changes, b is the number of a bank from 1 to 16.

Note that this instruction can only be used inside an accessory. |If
you try to include it in normal program you'll get an appropriate
arror message. '

PRUN (run a program from memory)
PRUN "name"

Executes a Basic program which has been previously installed in the
Afi i ga' smemory. Thiscommne! canbeusedeitherfromthedirectrnode,
or within a program In effect, PRUN is very simlar to a standard
procedurecall exceptthatanybobs, spritesormusicwi 11betotally
suspended.

Note that it's impossible to call the same prog"ram twice in the same
session. After you've called it once, any further attempts will ignored

compl etely.

~PRO6FIRST* (r eadthef i rst programloadedi nt o memor y)

p*==PRG FI RST*

This returns the name of the first Basic: program installed in the

Ami ga's menory,, It's used in conjunction with the PRG NEXT* command to
create a full list of all the currently available programs.

“PRG NEXT* (returns the next program installed in memory)
p*=PRG NEXT* ' . T e B

PRG NETX* is used after a PRG FIRST* command to page through all the
prograns installed in Amiga s nenory,, Wen the end of the list is
reached., a value of """ will be returned by this function,, Exanple;

v Nf=Prg First* _
VWhile N-<>"" ! -
Print "Progrant "nM
N*=Prg Next*
Wend

31

[T - A S RPN

B

=PSEL* (call program sel ector)
n*=PSELt ("filter"[default*, titlelt,title2%]

PSFL* calls up a program selector which is indential to the one used by
the "Run Ot her, Edit Ot her, Load Others, and New Ot hers conmands.. This
can be used to select a programin the usual way. The name of this
program will be returned in n*. If the user has aborted from the
selector, n* will be set to an emptry string "".

“filter" sets the type of programs which will be listed by
instruction. Typical values &re°.

"*, ACC List all the accessories in nmenory

" #. AMOS" Only displays the AMOS progranms which have been
install ed« ENEFEE

"ttt List all programs currently in menpry. .

For further details of the system see the MR command.

defaul t* . holds the nanme of a program which will be

used as a default.
titlei$, titler Contains up to two lines of text which will be _

displayed at the top of the selector.
See EXAMPLE 3.4 in the MANUAL folder for a denonstration. . !

The HELP accessory ' e - N 7

\WWhenever the HELP key is pressed from the Editor w ndow, AMOS
automatically executes an accessory with the name HELP.ACC if it's
avail able. Unlike normal accessories, this is displayed directly over
the editor wi ndow. Special access is provided to the current word you
are editing. The address of this word is placed in an address register
and can bereadus i ngthe AREGfunc t ion.

The editor control keys . L !

F| nally, here saf u111| st ofthevarl ouscontrolkeysandeffectss

Speci al keys 33
ESC Takes you to direct mode

Edltlng keys N ' T

Backspace Del etes the character to the immediate left of crsr,

_DELete Del etes the character underneath the cursor

RETURN Tokenises the current line. If you nove onto a line

and press RETURN it will split the line
SFT+BCKS/ CTRL+Y Del etes current |ine — '
CTRL+U Undo. Return the last line when in overwite node.,
CTRL+Q Erase the rest of chars in the line from crsr position
CTRL+1 Insert a line at the current position

i o P

T he cursor arrows

Left, Ri ght sloves cursor one space to the left/right

Up, Down Moves cursor one line up/down

SHI FT+Left,Right Positionsthecursorovertheprevious/nextword

SHI FT+up, down Move cursor to the top/bottom line of the current page
CTRL+up, down Di splays the previous/next page of program

SHI FT+CTRL+up. ,dn Move to start/end of text '

AM GA+up Scrolls text up without moving the cursor

AM GA+down Scrolls text down under the cursor

AM GA+left,right Scroll program to the left/right on the current line

Program contr ol

L Y
AMLGA+S Saves your program under a new name
AM GA+SHI FT+S " " current nane
AM GA+L Loads a program
AM GA+P Pushes the current program into a mem and creates a new
pr ogr am
AM GA+F) Flips between two progs stored in nenory
AM GA+T - Di spl ays next program in nenory.
Cut and Paste
CTRL+B Set the beginning of a block
CTRL+E Set end point of a block _
CTRL+C : Cut bl ock '
CTRL+M _ Bl ock move o
CTRL+S Saves the block in memory without erasing it first
CTRL+P Paste block at current cursor position
CTRL+H Hi de bl ock.

Mar ks

CTRL+SHI FT+CO-9) Defines a marker at the present cursor position,
CTRL+(0--9) Jumps to a mark

Sear ch/ Repl ace
ALT+UP Arrow Searches backwards through your pr'ogram to the next
linewhichcontainsalabelorproceduredefinit:Lon»
ALT+DOMN Arrow Searches down through yur program to find the next
| abel or procedure definition

CTRL+F Fi nd

CRTL+M Find Next

CTRL+R Repl ace

Tabs

TAB Mve the entire line at the cursor to the next TAB pos,.
SHI FT+TAB Move the line to the previous Tab position

CTRL+TAB Sets the TAB val ue

34

4: BASI C PRI NCl PLES 35

This chapter discusses the ground rules used to construct AMOS Basic
prograns and shows you how to inprove your programmng style with the
hel p of AMOS Basic procedures. :

Vari abl es

Variables are the nanmes used to refer to storage locations inside a
conputer. These locations hold the results of the cal cul ations
performed in one of your prograns. '

The choise of variable nanes is entirely up to you, and can include
any string of letters or nunbers. There Are only a couple of
restrictions. Al variable names MJST begin with a letter and cannot
comrence with an existing AMOS Basic instruction. However it is
perfectly permssible to use these keywords inside a nane. So variables
such as VPRINT or SCORE are fine.

Vari abl e nanes nmust be continuous, and may not contain enbedded
spaces. If a space is required,, it's a possible to substitute a "_"
charactsr instead.

Here are sone exanples of illegal nanes. The illegal bits are
underlined to make things clearer.

WH LE*, 5C, MDERN*, TQAD | "

Types of variabl es

AMXS Basic allows you to use three different types of variables in your
progr amns.

I nt egers

Unli ke nost other Basics, AMOS initially assumes that all variables Are
integers,. Integers Are whole nunbers such as 1,3 or 8, and é&re ideal
for holding the values used in your ganes.

Since integer arithmetic is nuch faster than the normal floating
poi nt operations, using integers in you programs can lead to dramatic
i mprovenents in speed. Each integer is stored in four bytes and can
range from --147'" 483' 648 to +147' 483 ' 648. Exanpl es of integer vari abl es!

A, NUMBER, SCORE, LIVES - _ o' : lee-- e

Real nunbers : , : : " 36
In AMOS Basic these variables are always followed by a hash ()

character. Real nunbers can hold fractional values such as 3.1 or 1.5.

They correspond directly to the standard variables used in nost other

versions of Basic. Each real variable is stored in four bytes and can

range between 1E-14 and 1E-15. Al values are accurate to a precision

of seven decinmal diqgits. Exanples5

P*, NUMBER *, TESTS

String variables

Str|ng varlabl es contain text rather than numbers™ They are

di stinguished from nornmal variables by the $ character at the end. The
I ength' of your text can be anything from 0 to 65' 500 characters

Exanpl es of string variabl es; :

NAME*, , PATH*, ALIEN

Gving a variable a value

Assigning a value to a variable is easy, Sinply choose an appropriate
name and assign it to value using the "e=' statenent,,

VAR=10
This loads the variable VAR with a value of 10.
A*="Hel | 0" | :

This assigns string "Hel | 0" to a variable A ¢

Arrays

Any list of variables can be conbined together in the formof an array,

Arrays are created using the DM instruction.

M (dinension an array)
D Myar(x,Yy, Z,».,)

DM defines a table of variables in your AMOS Basic program, These
tabl es may have as manu di nensions as you want, but each dimension is
limted to a maximum of 65' 000 elenents,, Exanples

Dm A$(10,B(10,J,0,, G410, 1Q,10

In order to access an elenment in the array you sinmply type the array
nane followed by the index nunbers,, These numbers are separated by
commas and a.ré& enclosed between round brackets ()..Note that the

el ement nunbers of these arrays always start from zero. Exanples

D m ARRAY; 10)

ARRAY(0) - =i 0: ARRAY(. 1.)-™5

Print ARRAY(1)3 ARRAY(0) _ :
(result; 15 10) _ S o ! o !

Const ant S

Constants are sinply nunbers or strings V\,hl ch are assigned to a
variable or used in one of your calculations™ They Are called constants
because they don't charge during the course of your program The
«following values are all constants.

1, 42, 3.141, "Hello"

u

i e e e P T = SRS s

As a default, all numeric constants are treated as integers., Any_
floating point assignments to an integer variable are automatically
converted to a whole number before use. Examplesi

A=3.141:Print A _ . e

(result; 3)
Print 19/2
(result;; 9)

Constants can also be input using binary or hexadecimal notation
Binary numbers Are signified by preceding themwith a *: character, and
hexadeci mal numbers are denoted by a $ sign,. Here's number 2b5z

Deci mal s 255

Hexadecimal: *FF '. _ _ ’
Binary: ; $11111:1. 11 ' ,

Mote that any numbers you type in AMOS Basic are automatically

converted to special internal format. When you list your program these
numbers are expanded back into their original form Since AMOS Basic
prints all numbers in a standard way, this will often lead to mnor

di screpancies between the number you entered and the number which is
displayedinyour 1i st i ng. However t he va 1l ue of t he number wi. 11 remain
exactly the same. Floating point constants are distinguished from
integersbyadecitnalpolnt.lfthispointisnotused,, thenumberwll
al ways be assumed to be an integer, even if this number occurs inside a
floating point expression. Take the followi ng exanples

For X=I To 10000
Al=AR+Z S .
Next X Loe e

Every time the expression in this program is evaluated, the "2" will be
| aboriously converted into a real number. So this routine will be-
inherently slower than the equivalent program bel ows

For X=I To 10000
fl=AR+Y O
Next X

This program executes over 252 faster than the original one because the
constant is now stored directly in floating point format. You should

al ways remember to place a decimal oint after a floating point constant
even if it is a whole number. Incidentally, if you mx floating point
numbers and integers, the result wll always be returned as a rea
number. Exanples

Print 19.0/2 o ¢ o \- -
(results 9.5) - -

Print 3.141+10 —
(result; .1.3141) Y

Arithmetic operations e L

The following arithmetic operations can be used in a nuneric
expressi ons

power
S*divide~"ndmlll t i p1ly

MDD modul o operator (remainder of a division)

JRPSTI

+ - plus and m nus

ANMD | ogi cal AND
ot logical R
NOT | ogi cal WOT

We've listed these operations in descending order of their priority.
This priority refers to the sequence in which the various sections of
an arithmetic expressions are evaluated.. Operations with the highest
priority are always calculated first.

INC (add 1 to an integer variable) ' - 39

I NC var
INC adds 1 to an integer variable using a single 68000 instruction. It
is logically equivalent to the expression var==var+l, but faster. \
Exanpl e: -
A=10slnc AsFrint A B | \ |

(results 11) ;

DEC (subtract 1 from an integer variable)
DEC var
This instruction subtracts 1 fromthe integer variable \>& . Exanple;

A=2sDec ASFrint A . : -_ o
(results 1) ' e S

ADD (fast integer addition)
ADD v, exp [,base TO top]
The standard from of this instruction imediately adds t.he result of
the expression exp to the integer variable v. It's equivalent to the
line: V=V+EXP ' :

The only significant difference between the two statenments is that .
ADD performs around 40%; faster. Note that, the variable v must be an

i nteger. Exanples L . o %
Tiiner=0 S - T = ,
For X=I To 1000 - . _ : - -
Add T.X
Next X
Print T,Tiner

(results 500500 7)

The second version of ADD is a little nore cohplicatéd". It is
effectively identical to the following code (but faster);

V=V+A e
| f V<Base Then V=Top S ' o L e

Exanpl e;

T

O m A(10)
For X=0 To 10; A(X)%X; Next X

V=0
Repeat
Add V,I,1 To 10
Print A(V)
Until V=100:rGm This is an infinite loop as V is always |ess

than 10i

As you can see. ADD is ideal for handing circular or repetitive |oops. .
in your ganes. - : '

String Operations' | ' : ' 40

Li ke nmost versions of Basic, AMOS will happily allow you to add two
strings together,. : :

A* :"Al_DS" +|| BaSI Cn

Print A$. o
(results AMOS Basic) S /
But AMOS also lets you perform subtraction as well. This operation

works by renoving all occurrences of the second string from the first,.

. Print "AMOS BASIC'-"AWD" S ' '
(result; S BASIC) '

Conpari sons between two strings are performed on a character by
character basis using the Ascii values of the appropriate letters:;

n Mll <|| BB"
"Fi |l enane"**" Fi | enanme" '
"X&" >" XH" e
"HELLO'<" hel | 0" B . .
Par anet er s o . _ |

The values you enter into an AMOS Basic instruction are known as
paraneters, i.e

Inc N

Add A., 10
Ink 1,2,,3 : S B Tl
The paraneters in the above instructions are N A 10,1,2 and 3
respectively. Cccasionally, some of the paraneters of a command can be
onmitted froman instruction. In this case., any unused values wl|
autoinatically be assigned a nunber by default., Exanples

I nk 5, , : . *

This changes the ink colour without affecting either the paper or
outline col ours.

Li ne nunbers and | abel s

Label s

Label* arp just a convenient way of marking a point in your AMJb Basi ¢
nrograns. They consist' of a string of characters fornmed using the same
rulles as AMOS variabl es. Label s should al ways be pI aced at the start of
t he line, and nust be followed imediately by a » " character., There
shoul'd be no spaces between the label and the colon., Exanples

TESTLABEL: __ . e
Print "H There!" o . o~
Goto TESTLABEL - . o e -

This program can be aborted by pressing CTRL+C

'Procedures . o o S Az

Procedures allow you to concentrate your efforts on just one problem at
a time without the distractions provided by the rest of your program
Once you've witten your procedures you can then quickly conbine them
in your finished program AMXS procedures are totally independent
program nodul es whi ch can have their own program lines,, variables,, and
even data statements.

PROCEDURE (create an Al S Basic procedure)
Procedure MAPI ECparaneter |i st]
End Proc[ExpreSS| on3

This defines an AMOS Basic procedure called NAME. NAME is a string of
characters which identify the procedure., It is constructed in exactly
the same way as a nornmal Basic variable. Note that it's perfectly _
acceptable t ouse identical names for procedures, variables and |abels.
AMOS will automatically work out whi ch object you are referrrng to from
the context of the |iDe- R
procedures are simlar to the GOSUB corrrrands found in earlier o
versions of Basic™ Here's an exanple of a sinple AMOS procedure;

Procedur e ANSVER | : _ ' -
Print "Forty-Two!" : : .
End Proc

See how the procedure has been terninated with an END PROC statenent.
You should also note that the Procedure and the End Proc drrectrves &r &
both placed on their own separate lines. This is conpul sory,, '

If you type the previous procedure into AMOS Basic as it stands, and
altenpt toruni t, nothing w 11 hap pen, That's be cause you haven't
actually called the new procedure from your Basic Program, This can be
achieved by sinply entering its name at the appropriate point in the
program As an exanple, enter the following line at the start of the _
program and run it to see the result of the procedure,, :

ANSVEER

| MPORTANT! When you are using several procedures on the same line, it's
Advisable f£cs *rJ<l) *nt e>* ht-™ <ipA<-c? -a+. dhG? encl t>f <=";ri> M Fitsm<>;i_ . Titi=a wil It1l
avoid the risk of the procedure being confused with a |abel. For
exanpl es

TEST s TEST : TEST Performs the test three tinmes.
TEST: TEST: TEST Defines Label TEST and executes test 2x

Al ternatively, you can preclude your Procedure calls with a Proc
statenment |ike so:

Proc ANSWER
Exanpl e: ' .

Proc ANSVER
Procedure ANSVER
Print "Forty-Two" :
End Proc "o . .

If you run this program again, the procedure will be entered,, and the
answer will be printed out on t he screen. Allhough the procedure

definition is positioned at the end of the program it's possible to
place it absolutely anywhere,, Wenever AMOS encouters a Procedure
statement, it installs the procedure and imediately junps to the final
End Proc. This neans there is no danger of accidentally executing your
procedure by m stake. Once you've created a procedure,, and tested it to
your satisfaction, you can suppress it in your listings using the fold
option from the nmain nenu. '

Thesefoldingprocedures -educe the apparent conplexity of your
listings and allow you to debug large prograns wthout the distractions
of uninportant details. You can restore your procedure listings to the
screen at any time by selecting the 'unfold menu option'.

Local andglobalvari ables

Al the variables you define inside your procedures are independent of
any other variables used in your program. These variables Are said to
be "local" to your particular procedure. Here's an exanple which
illustrates this:: :

A= Q00 B=a2 R :

TEST | | o
Print A,B " C '
Procedure TEST

Print AB

End Proc

It should be apparent that the names A and B refer to conpletely
different variable depending on whether they Are used inside or outside
the procedure TEST. The variables which occur outside 3 procedure are
"global" and cannot be accessed fromwthin it. Let's ke an ot her-
exanpl es

Dim A(i OO

For V=l To 100s A(V)=V:Wext V

TEST_FLAG=1

APRI NT

End

Procedure APRI NT
If TE3T. FLAGR
For P=I To 100

Print A(P)

Next p
Endif

43

End Ros::

...-_......._-_...-.-—_m

This program may | ook pretty harness but it contains two fatal errors.

Firstly, the value of TESTJ1.AG inside the procedure will always have
a valup dF zero. So the loop—betwe.en the IF and the ENDIF will never be
performed. That's because the version of TEST. FLAG within the procedure
is conpletely separate from the copy defined in the nmain program Like
all variables, it's autonmatically assigned to zero the fist time it's
used. ,

Furthernore, the programwon't even run! Since the global array a()
has been defined outside ARPINT, AMOS Basic will immediately report an
"array not dinmensioned" error at the lines

Print A(P) - ' ' 1 I

This type of error is extrenely easy tomake. So it's vital that you
treat procedures as separate prograns wi th thei r own independent set of
variabl es and instrcutions.,

There are a couple of extensions'to this system which nake it easy
for you to transfer information between a procedure and your main
program Once you're famliar with these conmands you'll have few
problens in using procedures successfully in your prograns.

Paraneters and procedures - :) 44
One possibility is to include a list of "parameter definitions' in your
procedure. This creates a group of local variables which can be | oaded
directly from the main program Here's an exanpl es

Procedure HELLOCWAIIE*] . : -
Print "Hello "j NAVE* ' : :
End Proc

The value to be loaded into NAVE* is entered between square brackets as
part of the procedure call. So the HELLO procedure could be perforned
in the foll ow ng ways: ' ' .

Rem Loads K$ into NAME* and enters procedure
I nput "What's your nane";n*

HELLOCN*]

HELLOC' St ephen”]

As you can see, the parameter system is general purpose and works
equally well with either variables or constants,, Only the type of the
variables Are significant.

This process can be used to transfer integer,, real or string
vari abl es. However you cannot pass entire Arrays with this function. If
you want to enter several paraneters you should separate your variables
using commas. For exanples

Procedure POWER[A, B]
Procudure MERGH A*,B*.,C3 ' =

These procedures mght by called using lines li ke:.

PONR ! 10, 3] . y -
MEROCEY 3e" | " TWD" |, "Three" :i) i ' LLele

hF]

, 45
Shared vari abl es

Anot her way of passing data between a procedure and the main program is
to use the SHARED instruction.

SHARED (defina a list of global variables)

SHARED variable Iist _

SHAFTED is placed inside a procedure definition and takes a list of AMOS
Basi c vari abl es separated by commas. These variables Are now treated as
gl obal variables., and can be accessed directly from the main program
Any arrays which you declare in this way should of course have been
previously diiiiensioned in your main program Exanples

A=1000s =42

TEST

Print A;B

Procudure Test
Shared A,B
Amf+Ro E=E+10

End Proc

TEST can now read and wite information to the global variables A and
B. If you want to share an array you should define it |ike sos

Shared A() ,B%() ,C*() s Rem Share arrays A,Bit and C*

GLOBAL (declare a list of global variables
from the main program

GLOBAL variable |ist

Wien you're witing a large prograi,, it's commonplace for a nunber of
procedures to share the sane set of. global variables. This provides a
sinple method of transferring |arge amounts of information between your
various procedures. In order to sinplify this process, we've included a
singl e coonmand which can be used directly in your main program G.OBAL
defines a list variables which can be accessed anywhere inside your
Basic program, w thout the need for an explicit SHARED statement in

your procedure. : _ . P Tee ML

Returning values from a procedure : . .. 46
If a procedure needs to return a value which is only local to itself,

it must use the following conmmand so that it can inform the calling

PROCEDURE command where to find the l|ocal variable

PARAH (return a paraneter from a procedure)
PARAM

The PARAM functions provide you with a sinple way of returning a result
froma procedure. They take the result, of an optional expression in the
END PRCC statenment, and return it in one of the variables PARAM

Y

PAR Alitf, or PARAfS d spend ing on its type,, Examples

MERGE . STRWAS["Afflos"," " .."Basic™!

Print PARAM

Procedure HERGE_STRI NBS[At, B*, Ct]
Print A*, B*, C

End Froc

l\h'tp_ that END PROC may only return a single paraneter in this way. The
PARALL functions will always contain the result of the nost recently
executed procedure. Here's another exanple, this time showing the use
of the PARAI18 functi on. : :

CUBE][3, 0]

Print Param

Procedure CUBH A$T] :
Gt =CUBES*QUBEL t *OUBEL t -

EndProc[Ct t]

Leaving a procedure : : _ 4

POP FRX (leave a procedure inmediately)
POP PRCC

Nornal |y, procedures will only return to the main program when the END
PRCC instruction is reached. Sonetines., however,, you need to exit a
procedure in a hurry. IN this case you can use the POP PROC function to
exitimnediately,.

Local DATA statenents

Any data statenents defined inside one of your procedures are held
conpletely separately from those in the main program This means each
procedure can have its own individual data areas.

Hints and tips

Here are a few guidelines which will help you make the nost out of your '
AMOS Basi ¢ procedures:

* It's perfectly legal for a proceduces to call itself, but this

recursion is limted by the anmount of space used to store the I|ocal
variables. If your program runs out of nmenory you'll get an

appropriateerror,

* Al local variables are automatically discarded after the procedure
has finished executing.

Menory banks . _ - . 48
AMOS Basic includes a number of powerful facilities for manipulating
sprites,, bobs and nmusic. The data required by these functions needs to

be> estored along with the .Bi\'s:i.cc prrtgram. AMOS>"B«i*sic; ufe?is V* 2p£?c;i.it, st

of 15 sections of menory for this purpose called "banks".

rach bank is referred to by a unique nunber ranging from1 to 15.
Many' of these banks can be used for all types of data, but some are
dpdirAtPd solely to one sort of information such as sprite definitions.
Al sprite inmages are stored in bank 1. They can be |oaded into nenory
using a line |ike: C

Load "AMOS DATAsSprites/ Or.topus. abk"

There are two different forns of menory banks Permanent and tenprorary.
Per manent banks only need to be defined once, and ans subsequently
saved along with your program automatically. Tenporary banks are nuch
nmore volatile and are reinitialized every tinme a programis run.
Furthermore, unlike pernmanent banks,, tenporary banks can be erased from
menory using the CLEAR conmand. "

Types of nmenory bank

AMOS Basic supports the follow ng types of menory banks

d ass Stores | Restrictions Type

Sprites Sprite or bob definitions Only bank 1 Per manent

| cons Hol ds icon definitions- Oly bank 2 Per manent
Musi ¢ Contains sound track data Only bank 3 Per manent
Anal Used for AMAL data Oly bank 4 Per manent
Sanples The Sanple Data ' banks 1-15 Per manent
Menu St ores MENUdef init i on banks 1-15 Per manent
Chip work Tenporury workspace banks 1-15 Tenpor ary
Chip data Permanent workspace banks 1-15 Per manent
Fast work Ternporary workspace banks 1-15 Tenporary
Fast data Permanentworkspace banks 1-15 Per manent
RESERVE (reserve a bank) * _ ' oo 49
RESERVE AS type, bank, | ength : . - A

The banks used by your sprites or bobs are allocated automatically by
AMOS. The RESERVE command all ows you to create any other banks which
you might require. Each different type of bank has its own unique
version of the RESERVE instruction.

RESERVE AS WORK bankno, | ength . ' _ o

Reserves "length" bytes for use as a tenporary workspace. Wenever
possible this nenory area will be allocated using fast menory, so you
shoudn't call this comrand in conjunction with instructions which need
toaceiessto Aniga's b 1i 1ler chi p.

RESERCE AS CH P WORK bankno, | engt h e

Al l ocates a workspace of size "length" using chip ram You can check
whet her there's enough chip ram available with the CH P FREE functi on.

RESERCE AS CH P DATA bankno, | ength

Reserves "I engt h" bytes of menory from chip ram This bank will be
automatically saved along with your Al C5 prograns..

BnnK may be an;r nunmber between 3. ond |IS. Since banks i -to 5 «i-«
normal Iy reserved by the system, it's wisest to |leave them al one. Note
that the only limt to the length of a bank is the anmount of available

1.

menory.:

LI STBANK (list the banks in use)

LTSTBANK lists the nunbers of the banks currently reserved by a
program along with their location and size. The listing is produced in
the following fornats :

Nunber Type Start Length

Norrmal |y the length of a bank is returned in bytes, but in case of
sprites and icons the value represents the total nunber of linages in
the bank instead. The reason for this is that the storage of each inage
can be anywhere in the Amiga"s nenory, the bank is therefore not a
continuous block of menmory. So don't BSAVE a sprite bank,, sinply use
SAVE "fil ename. abk" ' :

Del eti ng banks

During the course of a program you may need to clear sonme banks from
the nenory so as to load in additional data. Sprites may need to change
for a new part of a gane or a special piece of nusic is required to be
pl ayed. The ERASE command gives you quick control for data deletion,,

ERASE (del ete a bank)
ERASE b

ERASE del etes the contents of a nenory bank. The bank nunber b can
range from 1l to 15. Note that any nenory used by this bank is
subsequently freed for use by your program

Bank paraneter functions
If you want to have direct access to the bank data using comrands such
as poke, doke and |oke then use these commands to find a bank's address
in menory and its size.

=START (get the start address of a bank).

S=START(b)

This function returns the start address of bank uninber b. Once it's
been renbved, the location of the bank will never subsequently change,,
So the result of this function will remain fixed for the lifetinme of

t he ban k. Ex ampi es

Reserve As Wrk 3,2000
Print Start(3)

ALENGTH (Get the length of a bank)

I =l engt h(b)

The LENGIH function returns the length in bytes of bank nunber b. If

50

"

the bank contains sprites then the nunber of sprites or icons will be
returned instead. A value of zero indicates that bank b does not exist
Exapl e:

Reserve as work 6,1000
Print Length(6)

Erase 6

Print Length(6)

~Loading and saving banks : - -

Some programs will require many banks of information, a good example is
an adventure. This would need to load various graphics and sounds for
the different locations within the games domain,. An Am ga 500 would
have great difficulty holding all this data at once and so it's best to
simply load the data at the appropriate time of use.

LOAD (Load one or nore banks)
LOAD "filename"[,n]

The effect of this command varies depending on the type of file you a,r<s
| oading. If the file holds several banks, then ALL current menmory banks

will be erased before the new banks are |oaded from the disc. However

if you're loading just a single bank,, only this bank will replaced. The
optional destination point specifies the bank which is to be |oaded
with your data,, If it's omtted, then the data will be loaded into the

bank from which it was originally saved

Sprite banks are treated slightly differently. In this case the
parameter n toggles between two separate |oading modes. If n is omtted
or is assigned a value of zero, the current bank will completely
overwrillenbythenewsprites, Anyothervaluefornforcesthenew
sprites to be “appended* to this bank. This allows you to conbine
several sprite files into the same program Exanples

LOAD "Ai 10S....DATA Sprites/Octopus. abk"

SAVE (E>ave one or more banks onto the disc)
SAVE "filendmi"[,n] L

The SAVE command saves your nenory banks onto the disc, There Are two
possibleformatss

SAVE "filename. ABK"

This saves *ALL* currently defined banks into a single file onto your
disc.

SAVE "filename. ABK", n

The expanded form just saves memory bank number n. One should also be
sure to use the extension ABK at the end of the filename as this will
ens;ure you can identify that the file contains one or nore? nenory
banks.

BSAVE (Save an'unformatted bl ock
in binary format)

BSAVE file*, start TO end

The nenory stored between "start" and "end" is saved on the disc in
file*. This data is saved with no special formatting.. Exanples

BSAVE "Test" ,.Starts?) TO Start (7)+Length(7)

The above exanple saves the data in nmenory bank 7 to disc. The
difference between this file and a saved file as a normal bank is that
SAVE writes out a special blank header that contains information
concerning the bank,, This header is not present with a BSAVED file so
it cannot be |oaded using LQOAD. '

WARNI NG The sprites an icon banks are not stored as one chunk of
menory. Each object can reside anywhere in menory. Because AMOS uses
this flexible system of data storage you sinply can't save the nenory
bank using BSAVE. : ' : -

BLOAD (load binary information into K .- B2

a specified address or bank) '

BLOAD file*, addr . - c | - T
The BLQAD command |oads a file of binary data into menory., It does not

alter the inconming information in any way,, There &e two forms of this
function.

BLOAD file*, addr - B
Fil e* vviII_ be |oaded from the disc into the address addr.
BLQOAD file*., bank

File* will be loaded into bank. This bank nust have been previously
reserved, otherwise an error will be generated. Al so be sure not to
load a file that is larger than the reserved bank, otherwise it wll
over run the bank and start corrputing other areas of nenory!

Menory fragnentation
Sonetines, after a busy editing session, you nmay get an "Qut of Menory"
error, even though the information line inplie

Finding space for your variables

A a default, all variables are stored in a nmenmory Are A of exactly 8 k
in length,, A though this nay seem incredibly neagre, it's easily '
capabl e of holding around 2 pages of nornal text, or 2000 nunbers.

W've intentionally set it as snall as possible so as to maxim ze the
anmount of space available for your screens and nenory banks.

SET BUFFER (set the size of the variable area)
SET BUFFER n

S

e e

R

N i Aan,

g

Sets the size of the variable area in your current programto "n"

kil obytes. This nust be the FIRST instruction in your program
(excluding Rems). Otherwise you'll get an appropriate error nessage,,
For an exanple of this feature see EXAMPLE 4.1 in the MANUAL fol der

SET BUFFER should be used in your program whenever you get an "out of
string space error". Increase the value in 5k increnents until the
error di sappears™ f yourunout of memoryduringthispracess,, you' 11l
propably need to reduce the requirements of your program in some way.
See the CLOSE WORKBENCH and CLOSE EDI TOR commands for nore details.

=FREE (return the amount of free mem, in the variable area)
f =FREE
FREE returns the nunber of bytes which Are currently aVaiIabIe to hold
your variables. This value can be increased as required using the

previ ous SET BUFFER conmmand

Whenever FREE is called, the variable area is reorganized to provide

the maxi num space for your variables. This process is known as "garbage

collection", and is normally performed autonmatically.

Due to the power of AMOS Basic:,, the entire procedure is usually
accompl i shed practically instantaneously. But if your variable area is
bery large and you're using a lot of strings., the garbage collection
routine mght take several seconds to conplete. Conceivably, this could
lead to a unexpected delay in the execution of your prograns. Since the
garbage collection is totally essential, you nmay need to add an
explicit call to the FREE command when it will cause the |east amount
of harm in your program S ' :

5s STR NG FUNCTI ONS

L BT$= (return the leftnost characters of a string)
d*=LEFT*(s*, n) Te . . , S e : '

This instruction v\orks like in nearly any Basic |anguage (for exanpl e,
AnmigaBasi ¢),, Exanples N

B$="Hel I o! This is Ronnie!" s e \, o

U=Left*(B*,9) « . . - - e

Print L * ' o
(results Hello! Th) . S e = o

=RI GHT$= (return the rightnost character of a string)

d*=RIGHT* (s*,n) v . e Ve : s .
Same as the LEFT* -instruction,, but takes the rightnost characters.

Print Right*("AMOS Basic".,5) \ . '3 oo
(result; Basic) ‘ S i L

S e HM (return a string of characters fromwthin a string)

d*=MI D* (s*,;p, n)

MID$(dE. . panizst

The M D* function returns the mddle section of the string held in s$.
p denotes the offset of characters to the start of this substring;, and
n holds the number of characters to be fetched. If a value of "n" is
not specified in the instruction then the characters will be read right
up to the end of your string. Exanples

Print Hid*("AMOS Basic", A) . |_ _
(result: Basic) . . o .o

There is also a IUD instructions
WiDE(d$,p,nl=s

This version of HI M loads "n" characters into d$ starting from <
position p+i in s*. If a value of n is not specified directly then
characters will be replaced up to the end of the source string s*. This
kind of instruction is also possible when using !...BF$ and RI GHT*.
Here's an exanpl es

A$-="AMDS *x kgt
Wid$(A%,5)="Magic"
Print A$

(results AMOS Magic)

=I WBTR (search for occurrences of a

2 bkl i e

string within another string)

f=I NSTR(d*, s$ ‘Up])

IMSTR allows you to search for all occurrences of one string inside
another. It is often used in adventure games to split a conplete line
of text into .its individual commands,, There are two possible formats of
the INSTR function.

f =1 NSTR(d$,s$) ' .

This searches for the first occurrence of s$ in d$. If the string is
found then its position will be returned directly,, otherwi se the result
will be set to zero. Exanples: ° 4 e :

Print Instr("A 10S BASIC',, "AMOS')
(result: 1)

Print InstrC AMOS BASIC',"S")
(results 4)

Print Instr("AMOS BASIC',"AM GA")

(result; 0)

Input "String to be searched"; D : L '

Input "String to be found"; S$ '

X=l nstr (D", S$) ' v .

If X=0 Then Print S$;" Wt found" . ' g ¢

If XOO Then Print S*;" Found at position ;X =

Loop : . - . L

Normal Iy the search will commence from the first character in your text

string (dt). The secant version of INSTR lets you. test a specific
section in the string at a tinme.

p is now the position of the beginning of your search. Al characters
& e nunbered from the left to right starting from zero. Therefore p
ranges fromO to LEKi (st). Exanples

Print InstrC AMOS BASIC', "S" , 5) o ' "..__'-';_
(result: 8) e '
=UPPER* (convert a string of text to upper case) - " . 57
s* =UPPER* (n*) _ o S ' ' ;.' '

This function converts the string in n$ into upper case (capitals) and
placestheresullintos$,Examples

Print Upperf("AmOs BaSic") E ‘ .
(results AMOS BASIC) _ ST S

=LOWERS$ (convert a string to |ower case)
s*=LOUER* (n$) : : : T 1

LOWER* tr«nsl at «« «i I t=-.» = h»e ~ .=t , -« L, ,* I, +=1CWK- ,~,c_ Thisis
especially useful in adventure games., as you can convert all the user's
inpii tintoastandardformatwhichismucheasiertointerpret.

e bt nre mirhcat 28 e Bt g B a Taba

. o~
i

Exanpl e:

In put "Con tinue (Yes/No)"; ANSVER*
ANSt oTER*=Lower *(ANSWER*) 5 If ANSWER*="no" Then Edit
Print "Continuing with your prog.,.."

=FLI P* (invert a string)
f*TFLIP*(n*) i

FLIP* sinmply reverses the order of the characters held in n*.

--SPACE* (space out. a string) o A

s*=SPACE*(n) .
CGenerates a string of n spaces and places theminto s*. Exanples

Print "Twenty" ; Space*(20)5 "spaces" | o

=STRI N6* (create a string full of a*)
s*=STRING*(a$,n) - ' o
STRING' returns a string with n copies of the first character in ais

Print String*("The cat sat on the nmat", 10 o
(results TTTTTTTTTT) - . B

<CHR* (return Ascii character) . ~ . . -

s*=CHR*(n) T

s

Creates a string containing a single character with Ascii code n,

=ASC (get Ascii code of a character)

c=:AS(Ia*j oo LT e Ty

code of the first character

o, . -L e,

ASC supplies you with the internal Ascii

the string a$s :

Print Asc("B") T

(results 66) o e -,

=LEN (returns the nunber of characters stored in a*)

This way you. can get the length of a strings

Print Len("12345678")
(results 8)

in

58

i
i
P
]
H
i
i

T TI

it 5

s A i

R R S P I O

EORELY P

[

«2 (convert a string to number) - Ay
v=VAL(x$) .
vH=VAL (%) '
VAL converts a list of decimal digits stored in x$ into a number. If
this process fails for some reason, a value of zero will be returned

instead,, Exanpl es

X=Val ("1234):Print X .
(results 1234) - s

=STR* (convert a nunmber to a string)
s*=STR*(n) ’ o e . . . ; v
STR$ converts an integer variable into a string,, This can be "jery
useful because sone functions., such as CENTRE, do not allow you to

enter nunbers as a paraneter. Exanple;

Centre "Menmory left is "+Str*(Chip Free)*" Bytes."

Do not confuse STR$ with STRING:. , >)
Array options

SORT (sort all elements in an array) .~ . - = .
SORT a(0) ; ' R : _ .
SORT a#(0) ; The SORT instruction arranges the contents of any
SORT a*(0) ! array into ascending order. This array can contain

i either strings,, integers,, or floating point nunbers.

The a$(0) parameter specifies the starting point of your table. It must
always be set to the first itemin the array (item nunber 0). Exanple:

D mA(25)
Repeat S o ,

Input "Input a nunber (0 to stop)";A(P) : :

| ncP ' R olet .-
Until A(P-1)=0 O P>25 R L
Sort A(0) : SR A PE BN
Forl1=0toP-| U _ -l

Print A(l) ' - o _
Ki ext r o * ; ,

MATCH (search an a.rt~&y) o,) _ - .. ' 60 ;
r=MATCH(t (O), s) 3‘__
r=MATCH(t «(O), s«) MATCH searches through a sorted array for the E
r=MATCH(t*(0), s%$) value s. If this is succesfully found then r

wi |l be negative., Taking the absolute value of

this figure? will provide you with the item which came closest to your
original search parareter,,

Wte that only arrays with a single dimension can be checked in this

way. You'll also need to sort the arr& wth SORT before calling this
function« Exanpl es o

R s e ST

Read N ' o * o : .
D'm Dt (N) ' '
For 1=1 to N ; --v*.-.

Read Dt (1) BT

Next |

S Sort D8(O) = . ..

I nput A$. R o e . = e
It A$ =L _
For 1 =1 to NsPrint DS(l):Next I -. ": ." ..
El se - - o - NMeee e -
POS=! 1at ch(1) $(0), A$)
If POS>0 Then Print "Found" ,,D§(PQB);" In Record ";PCS

If POS<O And Abs(POS)<=N Then Print A*,"Not Found. C osest
; . To YD$(Abs(P0S))

If POS<O And Abs(PCS)>N Then Print A$,, "Not Found. C osest
To "; D&(N)

Endif | ! So- . :

Loop .

Data 10, "Adans",."Asinov","Shaw', "Heinlien","Zelazny", "Foster"
Data "N ven","Harrison","Pratchet % D: Lckson" B o

Note that MATCH could be used in conjunction with the 1KSIR function to
provide a powerful parser routine. This might be used to interpret the
instructions you entered in an adventure gane.

e

6 GRAPHICS

AMOS Basic provides you with everything you need to generate sone

amazi ng graphics. There's a conprehensive set of commands for draw ng
rectangles, circles and polygons,, As you would expect from the Am ga,
all operations Are performed practically instant aneously But even here
AMCS Basic has a trick or two up its sleeve.

The AMOS graphical functions work equally well in all the Amga's
graphi cs nodes INCLUDING hold and nodify node (HAM. It's therefore
possible to create breathtaking HAM pictures directly within AIG
Basi c!

Furthernore, you're not just limted to the visible screen. If you' ve
created an extra large playing area, you'll be able to access every
part of your display using the standard drawing routines. So it's easy
to generate the scrolling backgrounds required by arcade games such as
Def ender . :

Col ours

The Amga allows you to display up to 64 colours on the screen at a
tinme. These colours can be selected using the INK,GLAR and PALETTE
conmmands.

INK (set colour used by drawi ng operations)

INK col [, paper][, border] I e
col" specifies the colour which is to be used for all subsequent
drawi ng operations. The colour of every point on the screen is taken
fromone of 32 different colour registers. These registers can be
individually set with a colour value chosen from a palette of 4096
col ours.

Al though the Am ga only provides you with 32 actual color registers,,
AMXS |ets you use colour nunbers ranging fromO to 63. This allows you
to make full use of the colours available fromthe Hal f-Bright and HAH
nodes respectively. A detailed explanation of these nodes can be found
in the Screens chapter.)

The "paper" colour sets the background colour fill patterns generated
by the SET PATTERN command,, " T

The "border" colour selects an outline colour for your bars and

polygons., This option can be activated using the SET PAINT command |ike
sos

Set pattern O : Set paint 1
Repeat
C=Rnd(i6):Ink 16-C0,C
X=Rnd(320) - - 20sY=Rnd(200) - 20: S=Rnd(i 00) +10 "
Bar X, Y to X+S, Y+S
Until Mouse Key A

ki<r, 4 <* 4- KA 4- Aren f KG* m-Ase*fnt=-t. 2> <) «i->1 .- = A= AT h\<n i— <-i ~ K- .. m«A”™ be> <r,mri. - e<*d

Sinply include "enpty" commas at the appropriate places in the
i nstruction. For exanples

b1

B s

T FEALr

PP

e

Ink ,,5 : Rem Just sets the border col our

COLOUR (assign a colour to an index) o 62

COLAUR i ndex, t RGB _ e - ,
The COLOUR instruction allows to assign a colour to each of the Amiga's
32 colour registers,

"I ndex" is the nunber of the colour you wish to change,, and can range
from 0-31. As you nmay know, any colour can be created by (nixing
specific amounts of the primary colours Red, Geen and Blue, The shade
of your colour is conpletely deternmined by the relative intensities of
the three conponents

The expression $R6B consists of three digits fromO to F. Each
conmponent sets the strength of one of the primary colours, Red (R),
Geen (G or Blue (). The size of the conponents is directly
proportional to the brightness of the associated colour, So the higher

val ues, the brighter the eventual colour. . |
Hex Digit 0 1 2 3 4 5 6 7 8 9 A B C D E F |
Decimal o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HAM and Extra Hal f-Bright nodes use these indices siighty differently.
See Chapter 9 for nore details. ’ : : :

=COLOUR (read the col our assignnent) - ”

c=C0LOUR(i ndex) : LT . . ,
The COLOUR function takes an index nunber fromO to 31s and returns the
coour value whi ch has been prev i ously assignedtoi t« :

"I ndex" is sinmply the colour nunber whose shade you w sh to
determ ne. You can use this function to produce a list, of the current
col our settings of your Amiga like so:

F]

For C=0 To 15 o R
Print Hex$(Colour(Q,,3) [/ =~ . . o«
Next C : : S
"._ .
PALETTE (set the current screen col ours) . - .. B3
PALETTE list of colours L o

The PALETTE instruction is really just a rather nore powerful version
of COLOUR, Instead of l|oading the colour values one at a time, the
PALETTE commrand allows you to install a whole new palette of colours in
a single statenent. : , , .

However you don't have to set all the colours in the palette at
once. Any conbination of colours can be |oaded individually ;

PALETTE *166,*500,t36d r. Foom S«,t« j...s-t | h,<»> << lo...*

You can al so change selected colours in the mddle of your list 5

b o

e

* TR e

PR

g T

e st B3 L et e e

it e o e e e

PALETTE $200,, $400 s Rem Change colours 0 and 2

It's inmportant to realise that only the colours in the palette which
are specifically set by this command will actually be changed. Al
other colours will retain their original values. Here Ara sone
exanpl es:

Pal ette O *FOOs* OFO

Palette 0, $770

Palette 0,,f>66

Pal ette Ov*l *2, $37 a* b, $6 *71 1*8,, $9, ,$A, 1$B,). CJD, . $E| 1$F "o

At the start of your program the colour palette is automatically |oaded
using a list of default color values. These settings can be adjust ed
using a sinple option from the AMOS configuration program

This conmand can also he used to set the colours used by the
Hal f-Bright and HAM nodes. These extend the existing colour palette to
generate dozends of extra colours on the screen™ See chapter 10...

Line dravvl ng corrrrands

CGR LOCATE (position graphics cursor)
@® Locate X,y . . .__.._"..._' ' |

This sets the position of the graphics cursor to screen coordinates
X,y. The graphics cursor is used as the default starting point for nost
drawi ng operations. So if you omt the coordinates from commands such
as PLOT or CIRCLE, the objects will be drawn at the current cursor
position. For exanple:;

@ Locate 10., 10 :: Plot , | R B

G Locate 100,100 s Circle ,,100 o .]\
=X&R (return x coordinate of gfx cursor) - R e

=YGR (return y coordinate of gfx cursor)

X =XGR _ V.o

y =YGR (. R Ml
These functions return the present coordinates of the graphics cursor;

Circle 10,100,,.1.00 B P PPPL

Print Xgr., Ygr

PLOT (|b|0t a single point)
PLOT xoy [,dl. - | - .

The PLCOT comrand |s the SI npl es drawi ng function provi ded by AMOS

&-I:\{i' T 4 '—.lTlr- -

colour W| 1i now be used

i -
\"Al@""s‘> Jr.fjmaxvstxl—lzg..I\/un(?-l>§nn<

|n alﬁll‘ subsequent draW|(sg operations..

[fthecolour"<'isomilledfromthisinstrucllon,thepointwillbe

B P R

AR T e e

Lt

plotted in the current colour. For exanple:

Curs OFf: Flash Of : Random ze Ti ner
Do .
Pl ot Rnd(319),;Rnd(i 99),;Rid(i5) _ o

Loop - . <o

It's also possible to omt the X or Y coordinates from this
instruction. The poin t w11l be plolled at the gf x cursor position .

Plot 100,100, 4 vee
plot ,,i50 Lo e e
Cls s Plot , S :

PO NT (get the colour of a point)
c=POI NT(x,y) - _))
PO NT returns the colour index of a point at coordinates X,y ;

Pl ot 100 J.100
Print "The colour at 100,100 is "; Point (100, 100)

DRAW (draw a line)6

DRAW is another very Basic instruction. Its action to draw a sinple

straight line on the Amiga' s screen.
DRAW x| ,yl TO x2,y2 ' | o
Draws a |ine between the coordinates X.]__,‘yl and x2fy2
DRAW TO x3,,y3 A o
Draw a line from the current gfx crsr position to x3,y3,. Exanples
Col our 4, $707sink 4
Draw 0.50 To 200, 50

Draw To 100,5.00 IR
Draw To 0,50 .o .

BOX (draw a hol | ow retangl e)

BOX xl,yl TO x2,v2 N . _

The BOX coranand draws a hol | ow retangul ar box on the screen., x1,y3
the coordinates of the top left corner of the box, and x2,y2 are'the

coordi nates of the point diagonally opposite.

POLYLINE (rultiple line draw ng)

POLYLINE is very similar to DRAW except that it draws several |ines at

a timlo Txra mCudifale ax =BoK4]i.5(, Aomp.lsx hollow pHIvaon« -in i a:

single statenent.

m

e

'
o T R e

Jp———"

POLYLINE xI,yl TO x2,,y2 TO x3sy3

CIRCLE (draw a hollow circle) 1.
C RCLE xiy,r
The Grcle command draws a hollow circle with radius r and centre x,Y-

As normal; if the coordinates ar& omtted fromthis commnd the circle
will be drawn from the current cursor position5 : :

Plot 100,100 s Gircle ,,, 50 - ,

ELLI PSE (draw a hollow ellipse)

ELLIPSE x,y,rl,r2 3 o - : S A

The ELLIPSE instruction draws a hollow ellipse at coordinates x,y. The
hori zontal radius is ri. It corresponds to exactly half the w dth of

the ellipse. ??. is the vertical radius and is used to set the height of .
the ellipse. The total height of the ellipse is rl2 . -

L| ne typeS . ’jl.-- ’ o '.-. .) T

AMXS Basic allows you to draw your lines using a vast range of possible
line styles. -

SET LINE (set the.line styles)
SET LIME mask S S | *

The SET LINE command sets the style of all lines which i\re subsequently
drawn using the DRAW BOX and POLYLI NE commands.

"Mask" is a I1feeshit binary nunber which describes the precise
appearance of the line. Any points in the line which Are to be
displayed in the current ink colour are represented by a one, and any
points which a.re to be set to the background colour are indicated by a
zero. So a nornal line is denoted by the binary nunber
21 111111111 111111 and will be displayed as......... Simlarly, a dotted

line like ... _ wll be produced by a mask of 94111000011110000.

By setting the line mask to val ues between 0 and 65535, it is
possible to generate a great variety of different line types ;

Set Line *FOFO v o ;
Box 50,100 To 15G,:1.50 _ LT oo

This line style as no effect on shapes drawn with CIRCLE or ELLIPSE

F|IIed shapes

- 66

67

1 B T e - iz

e

L T,

PAINT (contour fill)

PAINT jc,y.,mode . ' _

e o T e

The PAINT command allows you to fill any region on the screen with a
solid block of colour™ Additionally you can select a fill pattern for
your shapes using the SET PATTERN command, .

X,y Are the coordinates of a point in*side the area to be filled.

"Mode" can be set to either 0 or 1. A value of 0 termnates the filling
operation at the first pixel found with the current border colour. A
mode of 1 halts the filling operation at any colour which is different

fromtheexistinginkcolour.

See EXAMPLE 6.1 in the MANUAL folder for a demonstration,.

BAR (draw a filled rectanglé) . v ., 68
BAR xI,yl TO x2.,y2 o N

Draws a filleéd bar from xl,yi -the coordinates of the top left corner
of the bar- to x2,y2 -the opposite corner coordinates.

POLYGON (draw a filled polygon)

POLYGON x|, TO x2.,y2 TO x3,y3 ... N . : f' :) . .
POLYGON TO «xl,,yl TO x2,y2 :

POLYGON generates a filled polygon in the current ink colour It's
basically just a solid version of the standard POLYLINE command

There's no real limt to the number of coordnate pairs you may use,,
other than the maximum line length permtted by AI1QS Basic: (255 chars).

Fill types : L e '

In AMOS Basic: you' renot j ust restr i ctedtof i 11 ing your shapes wi th a
solid block of colour,, There Are dozens of fill patterns to choose
froffl, and you can even load your own patterns directly from the sprite
bank.

SET PATTERN (select fill pattern) -89
SET PATTERN pattern Sy ' |

This comrand allows you to sel ect a fill pattern for use by your
drawi ng operations. There are three possibi.l.ities

Pattem Q@ ...

This is the default, and fills your shapes with a solid block of the
current |INK col our.

If the pattern nunber is >0, AMOS Basic selects on of 34 built-in fill

styles. These are found in the MOUSE. AM file? on your start-up dsc,,
and can be edited using the AMOS Basic sprite definer,, Note that the
first three inages in this files are required by the nouse cursor (see
CHANGE MOUSE). The fill patterns & e stored in the inages from four
onwar ds. ' ' a

Patt er n<0
This is the nost powerful option of all. "Pattern" now refers to a
sprite inmage in bank one,. The image is nunber cal culated using the

formula: SPRITE |MAGE = PATTERN * (-1)

The selected inmage will be automatically truncated before use,,
according to the follow ng rules

% The width of the inmage will be clipped to sixteen pixels.

* The height will be rounded to the nearest power of two, ie 1,,2..,64
Depending on the type of your image., the pattern will be drawn in one

of two separate ways. Two-colour inages are drawn in "nonochrone". The
actual colours in your inmage are conpletely discarded, and the pattern
is drawn using the current ink and paper colours,, o

It's also possible to produce nulti-coloured fill patterns. In this
case the foreground colours of your inmage and nmerged with the current
ink colour using a logical AND, Sinmlarly the paper colours of your
pattern is CRed with the sprite background (colour zero). If you wish
to use your original sprite colours, you'll need to set the ink and
background colours like son

fnk 30,0 [~\“] . _ .“.
Don't forget to load your sprite palette from the sprite bank with
GET SPRI TE PALETTE before using these instructions,, otherw se the

display is likely to look rather nmessy. Exanples of this instruction
can be found in EXAMPLE 6.2 in the MANUAL fol der.

SET PAINT (set / reset outline node)
SET PAINT 1 S

Toggl es the outline drawn by the POLYGON or BAR instructions. As a
default this node is set to OFF.

If n=l then outline node will be activated. e

Witing styes
6R WRI TI NG (ghange writing node) o o
GR WRITING bitpattern s o

Wienever you draw sone graphics on the screen,, you naturally assune
that anything underneath it will be overwiteen. The GR WRI TI NG command

AHOUS voll -to choose fFom A v~ndo c;f fr;llp M1-tsvpriAtlv& < E="w-Hira «dof"- ..

These can used to generate dozens of intriguing effects.

"Bitpattern" holds a sequence of binary bits which specify which

70

A ATy T A

b

graphics mods you wish to use,, Here's a list of the various
possibilities along with a brief explanation of their effects;:

JAM mode (Bit 0=0)
JAML only draws the parts of your graphics wh

ich

are set to the current INK colour. Any sections drawn in the paper

colour are totally omtted- This is particularly useful with with the
TEXT command as it allows you to merge your text directly over an
existing screen background., For examples
Ink 2,5sText 140,80, "Normal Text":iG Witing O0: S
- : Text 140,71,"JAML" *
JAM2 mode (Bit 0=1) »
Thisisthedefaullcondition,, Anyexisting
graphics on the screen will he completely replaced by your new image,.
XOR mode (Bit 1=1)
XOR combines your new graphics with those already

on the screen using a logical operation known as exclusive OR. The net

result is to change the colour of the areas of a drawing which ov
as existing picture.

erlap

One interesting side effect of XQR mode is that you can erase any

object from the screen by simply setting XOR mode and drawing you

r

object again at exactly the same position. EXAMPLE 6.3 contains a

simple demonstration of this technique and produces a neat rubber and
banding effect.
| NVERSEVID (Bit 2=1) * '

This reverses the imge before it is drawn. So any
sections of your image drawn in the ink colour will be replaced by the
current paper colour and vice-versa,, |NVERSEVID mode is often used to
produce inverted text.

Since these modes are set using a bitpattern, it's possible to
combine several mode together
G Witing 4 + 1 x Rem set JA12 and | NVERSEVID _
O Witing 7 s Rem chooses JAM2, | NVERSEVID and XOR e
Ink 2,5 ". Text 140,80, "Accession & Image rulezi" o
NOTE: This command only affects drawing operations such as ClIRCLE, BOX

and graphical text (TEXT)., The drawing mode used by normal text

commands |ike PRINT and CENTRE is set using a separate WRITING command,,

See al so AUTOBACK. o

CLIP (restrict all gfx to a section of the screen)
CLIP Cxi,yl TO x2.y2] o . %

The CLIP instruction limts all drawing operations to a rectangula
region of the screen specified by the coordinates xi,yl to x2,,y2,

r

xI,yl represent the coordinates of the top left hand corner of the
rectangle, and x2,y2 hold the coordinates of the bottom right corner

Note that it's perfectly acceptable to use coordinates outside the
normal screen boundaries,, All the clipping operations will work as

7

expected, even if only a section of the clipping rectangle is actually
vi si bl e.

B e

As you can see, only the parts of the circle which lie within the
clipping rectangle have been drawn on the screen. The clipping zone can
be restored to the nornal screen area, by onitting all the coordinates
fromthisinstruction.

~See EXAMPLE 6.4 in the MANUAL fol der.

Advanced techni ques C . | o ' e

SET TH SPRAS (set tenporary raster) | _ .
SET TEMPRAS [addr ess, si ze]

This instruction allows experienced Amga programmers to fine tune the
amount of menmory used by various graphics operations. WARN NG
i nproper use of this instruction can crash your Amga copletely! -

Wienever an AMOS program performs a fill comand,, a special nenory
area is reserved to hold the fill pattern,, This nenory is automatically
returned to the system after the instruction has been termnated. The "
size of the menory buffer is equivalent to a single bit plane in the
current screen node,, So the default screen takes up to a total of 8k.

The size and location of the graphics buffer can be changed at any . 72
tinme using the SET TEMPRAS instruction, ’

"Size" is the nunber of bytes you wish to reserve for your buffer- .
area. It ranges between 256 and 65536, , o

~ The amount of nemory required for a particular object can be
calculated in the follow ng way:

-+« Enclose the object to be drawn with a rectangul ar box
-- The area required will given bys S ze-=Wdth/3 * Height,,

If you are intending to use the PAINT command,, you should take care to
ensure that your figure is tdosed*,, otherwise nore nenory will he
neede and the system may crash.

"Buffer" can be either an addess or a nenory bank,, The menory you
reserve for this buffer should always be CH P ram, Since the buffer-
area is now allocated once and for all at the start of your program, _ .
there's no need to continually reserve and restore the menory buffer. S
This can speed up the execution of your programs by up to 5 ',) L

You. can restore the buffer area, to its original value by calling the
SET TEHPRAS conmmand with no paraneters.

"~ See the EXAMPLE 6,5 in the MANUAL fol der,,

kg e

t gt

e e

7's CONTROL STRUCTURES 73

GOTO (junp to a new |ine number)

The action of GOTO is to transfer the control of the program one place
to another. There ar& three fornms of the GOTO comrand all owes in AMOS;

" GOTO | abel
"l abel" is an optional place marker at the side of a line. Label names
are defined using the ";" colon character I|ike sos
r | abel ;

The | abel name can consist of any string of al phanuneric characters you -
like, including "-". It's constructed using the same rules which apply
for variables and procedure nanes,

@QOro |line nunber . o - ; . i

Any AMOS Basic line cas be optionally preceded with a nunber,. These
line nunbers &e included solely for conpatibility purposes wth other

versions of Basic (such as S T&S for the Atari ST). It's better to rely

on |labels instead, as these are much easier to read and renenber.
: @QOTO vari abl e ' oL o

Variabl e can be any allowable AMOS Basic, expression, This expression
may be either a normal ingerer or a string. Integers run a |ine nunber
for your GOTO, whereas strings hold the name of a |abel.

Techni cal | y speaking,, this construction is known as a conputed goto.
It's generally growned upon by serious programrers, but it can be
incredi bly useful at times. Exanples:

ROOM=3 - LR - . . _
BEG N S SR i
Goto "ROOM' - J- StHKRoouv) momm -
E n d ' ' .

ROOMB; . . _

Print "Room three!" . A .

Goto BEG N o ' AR

GOSUB (junp to a subroutine) ' .- RN

@OSUB is another outnoded instruction, and provides you with the useful
ability to split a programinto smaller, nore manageabl e chunks, known

as subroutines. Nowadays, GOSUB has been al most entirely supplanted by cevess

AMOS Basic's procedure syst em However, GOSUB does form a useful
hal f-way house when you're convertlng prograns from another version of
Basic: such as SICs,, :

As with GQIQ, there &e three different forns of the GOSUB
i nstruction. : .

QO8US n Jump to the -rubr<,«tins «t liner,

@OSUB nane Junmp to an AMOS | abel

S i kL e

o

s St e =i et

RPN

i

GCsUB exp Junp to a label or line which results from the
expression in "exp"..

Exanpl e;
Forl1l=1Tol0 . =« « ¢ ¢ =

CGosub TEST . - o
Newt |)) L . :) -
D rect . : ' .
TEST; e '
Print "This is an exanple of GOSUB";Print "I equals ";I

Returns Rem Exit front subroutine TEST and return to main prg.

It's good practice to always plave your subroutines at the end of your
nmain program as this nakes them easier to pick out from your program
listings. You should also add a statenent like EDIT or DIRECT to end of
your main program as otherwise AICS may attenpt to execute your GOSUBs
after the program has finished,, generating an error nessage-

RETURN (return from a subroutine)

RETURN

RETURN exits from a subroutine which was previously entered using

GOSUB. It imediately junps back to the next Basic instruction after
the original GOSUB.

Note that a single GOSUB statenent can contain several RETURN
commands., So you can exit from any nunber of different points in your
routi ne depending on the situation.

PCP (renove the RETURN info after a GOSUB) e .75
P O P e - |
Normally it's illegal to exit froma GOSUB étatement using a standard:

@rQ. This can occassionally be inconvenient., especially if an error
occurs, which makes in unacceptable to return to your program from the
precice point you left it. - ..

The POP instruction renoves the return address generated by your
GOsUB, and allows you to |leave the subroutine in any way you like,
without first having to execute the final RETURN statenent. Exanple:

Do : : C e e e e '
Gosub TEST : R

Loop ’

BYE: ' _ o _ ; E

Print "Popped Qut" L : . .

Direct s S ' I _

TESTs e . - o oot

Print "Hi there! " ‘ o ' ' '

If Mouse Key Then Pop :: CGoto BYE

Ret urn .

o .‘..-_m_...o..;.‘..,..;.-a'ﬂ'l-_

O

IF...THEN. .. [ELSE] (coose between alternative actions)

The |F... THEN instruction allows you to nake sinple decisions (wWthin a
Basic program The format is:

IF conditions THEN statenents 1 [ELSE statenents 2]

"conditions" can be any list of tests including AND and (R, Statements
1 and Statenments 2 nust be a list of AMOS Basic instructions,, |f you
want to jump to a line nunber or a label,, you"ll have to include a
separate GOTO command |i ke sos

If test Then Goto Label s This is fine.

If you forget about this, and |eave the "Goto", you'll get an error
nessage "procedure not defined". :

If test Then Label s Rem TH' S CALLS A ~PROCEDURE*

The scope of this IF...THEN statenent is limted to just a single line
of your Basic program It has now been superceded by the nuch nore
powerful |F...ELSE. ..END F comrand.

IF...[ELSE]...ENDIF (structured test)

Al though the original formof IF...THEN is undoubtedly useful, it's
rather old fashioned when conpared with the facilities found in a
really nodern version of Basic such as AMOS. This allows you to execute
whol e lists of instructions depending on the outcone of a. single test.

|F tests=TRUE e Lo
<List of statenents 1>

ELSE
4...i¢ of statenents 2>

ENDI F L, e et

Note; it's illegal to use a normal |F...THEN inside a structured test!
These should be replaced by their equivalent IF. . ENDF instruction ;

If test Then CGoto Label Else Label 2

This now becones: o

If test :: Goto Label :i Else goto Label2 s Endif
[0} r
If test
Got o Label
Endi f

Here is an exanple of the IF.,,ENDF statement in actions

I nput “Enter values for ab and c';AB.,C -
If A=B ' . '
Print "Equal" :
Print "Different”; '
If AOB and AOC

76

B A

Print % and C is not the sane too!"
Endi f
End it

LT

Each IF statenment in your program MJST be paired with a single ENDF
command as this infornms AMOS Basic precisely which group of
instructions are to be executed inside your test,.

Nate that "THEM is not used by this formof the instruction at all.
This nay take a little getting used to it you are already experienced
with one of the other versions of Basic for the Commopdore Am ga.

FOR .. NEXT (repeat a section of a code C o 77
a specific nunber of tinmes) o

FOR index=first TO last [STEP inc] . : Voo
*G@ st of instructions!?- . ' -

NEXT [i ndex] L e .

"I'ndex" holds a counter which will be incremented after each and every
loop. At the start of the loop,, this counter will be loaded with the
result of the expression "first".. The instructions between FOR and the
NEXT Are now performed until the NEXT is reached

"inc" is a value which will be added to the counter after each loop
by the NEXT instruction. If this is omtted,, the increment will be
automatically set to 1.

Note that if "inc" is negative., the loop will be halted when the
counter is less than the value in "first". So the entire loop will be -
performed in reverse. LI o _ e

Once inside loop, "index" can be read from your program just like a
normal variable. But you are *MOT* allowed to change its value in any
way as this will generate an error message. .
EachFORstatemsntinyaurprogramMUSThematchedbyasingleNEXT
instruction. You can't use the shorthand forms found in other Basics
like NEXT R1,R1. Here ures a couple of examples of these loops:
For 1=32 to 255 s Print Chr*(1); sNext | _ _ . Lo

For RI=20 to 100 Step 20 =« - R R

For R2=20 to 100 Step 20 Ly !
For A-0 To 3 ' ' '
Ink A ’ , Lo)
El'lipse i60.i00,,R., R2 L : e
Next A : ' : ' '
Next R2
Next RI
VWH LE. .. WEND (repeat a section of : e .78

code while a condition is true)

VWH LE condition

list of statements

VEND

i i 8 gl W ke e

“econdition™ can be any set of tests you like and can include the
constructions AND, OR and MOT., A check is made on each turn of the
loop. If the test returns a value of ~1 (true),, then the statements
between the WHILE and WEND will be executed, otherwise the loop will be
aborted and Basic will proceed to the next insturction. Type the
follow ng example:

[nput "Type in a number"5X _ _ :
Print "Counting to 11" N _ o, -
While X<11 ' - 1

Inc: X . o :

Print X : . -
Vend ‘ -

Print "Loop termnated" | | 3 . Lo

The number of times WHILE loop in this program will executed depends on
the value you input to the routine, If you enter a number larger than
10, the loop will never be executed at all. WHILE will therefore only
execute the statements if the condition is TRUE at the start of your
program

REPEAT. .. UNTIL (repeat until a condition is satisfied)

REPEAT . , \ _ e e
list of statements - e o e
UNTIL condition ' A

REPEAT...UNTIL is simlar to WH LE...VWEND except that the test
conpletion is nade at the end of the loop rather than the begi nning.
The loop will be repeated continually until the specified condition is
FALSE. So it will always be perfornmed at. |east once in your program
Exanpl e:

Repeat
Print "AMOS Basic" PR ol
Until Muse KeyOO -~ ' . -

DQ,..LOGP (loop forever) . ->

» 0

"

list of statenents

u v
" u

LOOoP e o C e . : ;eee

The DO...LOOP comuands take a list of Basic: statenents and repeat them
continually. In order to exit fromthis loop, you'll need to use a
special EXIT or EXIT IF instruction. '

The advantage of this systemis that it's a structure alternative to
the GOTO loops that tend to crop up in earlier versions of Basic. Take
the foll ow ng exanpl e:

TEST: - LT o
I nput "Another gane (Y/ N "$AW
If Upper*(ANS)--"N'" Then Goto BYE

79

it T

,,_,gx

-

i o Py

e el

Lt e i e

e A
. .

GAVE s Rei call play game procedure
Goto TEST
BYES e

E n d

Now a second version using DO., ,.LOP

| Nout "Another game (Y/ N)"; AN* . .
Exit If Upper*(AN*)="N' . o : >

GAME : Rem call play game procedure _ ' .o *
Loop ' '
End

EXIT (Exit froma DO. .LCOCP)
EXIT [n] S | e e

The EXIT command exits immediately from one ore (nore program | oops
created with the FOR. .. NEXT, REPEAT ,. ,,UNT I, WHI LE, ,, VA\D,, or DOQ,.,.LAP
statements. Your AMOS program will now junmp directly to the next o
instruction after the current | oop. S\

n" is the nunver of loops you wish to leave. If it's onmitted, then
only the innernost loop will be terninated. :

EXIT IF (Exit froma |oop depending on a test) : - 80
EXIT IF expression!! | ri] - , '

"expression" consistes of a series of tests in the standard AMOS
format. The EXIT will only be perforned if the result evaluates to -1.

The "n" paranmeter works the sane way as using EXIT conmand.

EDI T (stop runni ng the prog and return to Editor)
EDI T e e e e
The EDIT directive stops the current program and returns to the AMOS

Hasic: editor., This can be very useful when you are debuggi ng one of
your progs. .

DI RECT (exit to direct node)
DI RECT _ ' o
Term nates your program and junps to the direct node imrediately. You

can now examine the contents of your variables or list your prograns

out to the printer.
-

END (Exit from the program - Sy 81

T e ST

e A

i

END

This instruction exits froma program. You'll now be given the option
to return to either the editor or to direct node.

ON...PROC (junmp to one of several
procedures depending on a variable)

ONv PROC proci., proc:2,,. proc3, . ..procN

Junps to a nanmed procedure depending on the contents of variable ==
Note that any procedures you use in this comand CANNOT i ncl ude
paraneters. |f you need to transfer information to this procedure, you
should place them in *global* variables instead,, See PROCEDURES for'a
full explanation of this technique,, '

The N, ..PROC command is effectively equivalent to the follow ng!

If v=J. Then Proci
If v:=2 Then Proc2

o
H

If v'n Then ProcN

ON ...QOTO (jit dp to one of a list of lines
dependi ng on a vari abl e)

Nv GOTO linel, l:i.ne2, 1:i.ne3, n.l:i.neN

The ¢ GOTO instruction lets your programjunp to one of a nunber of
lines depending on the result of an expression in v. It's equivalent to
the following I|ines:

If v=I Then Goto Linel
If v="2 Then CGoto L.ine2

If v=n Then Goto LineN

ON...G0sUB (GsWB one of a list of
routines dependig on var)

ONv& GOSUB linel, line2, Hne3, .,

This is identical to QN,,, .Q0IO except it uses a gosub rather than a
goto to junp the line,,

LMcRY n GOSUB (call a subroutine at regural intervals)

EVERY n GOSUB | abel

The ON EVERY statenent calls the subroutine at |abel at regural
intervals, without interfering with your main program

n" is the length of your interval in 50ths of a second. The time
taken for your subroutine to conplete nust always be less than thi->
period, or you'll get an error. i

82

DpyE e

1

Ll

Error handl i ng

ON ERROR GOTO (trap an error within a Basic prog) . ¥
ON ERROR GOTO | abel

This command allows you to detect and correct the errors inside an AMOS
Basic program without having to return to the editor w ndow,

Sonmetimes] errors can arise in a program which &e inpossible to
predict in advance. Take, for instance, the follow ng routines

[nput "Enter two numbers"?A B
Print A" divided by "nBs" is ";AB
Loop

This program vjorks fine until you try to enter a zero for B. You can

avoid the "division by zero error" by trapping the error with an ON
ERROR GOTO instruction |ike so; L

ON ERROR GOTO | abel _ _ o

\Whenever an error occurs in your Basic program AMOS will now junp
straight to "label”. This will be? the starting point of your own error
correction routine vvh|ch can f|x the error and safely return to your
main program

Note that error handler MJUST exit using a special RESUME instruction.

You are not allowed to junp back to your program with a normal GOTO
statement.

O Error Goto HELP

Bo

Input "Enter two numbers" i;A,B A - .
Print A" divided by "5B5" is ";A/B '
Loop _
HELPs S
Print s Print s Bell
Print "I'm afraid you' ve attenpted to divide with zero!"

Resunme Next; Rem Return back to the next instruction.

In order for this systemto work, it's essential that an error does not
arise inside your error correction routine, other‘vw' se AMOS will halt
your program ignom ni ously.

The action of ON ERROR GOTO can be disabled by calling ON ERR(R with
no paraneters. ‘

O Error !i RemKill error tra'ps _ CoL e

4 ERROR PROC (Trap an {error using a procedure)
ON ERROR PRCC nane .

Selects a procedure which will be called automatically if there's an

error in the main program, It's really just a structured version of the
ok inpftoaaaro-J1”-tey«r, -t.

Al t hough your procedure nust be term nated by and END PROC in ‘the
normal way,, you'll need to return to your msun program with an

S e o

e

additional call to RESUME . This can be placed just before the final END
PRCC st at ement .

RESUVE (resume execution of the program ' 85

after an error)

There Are five possible formats of this instructions . '_ , e .

RESUVE : . e e e
Junps back to the statenent which caused the error and tries again»
RESUME NEXT

Returns to the instruction just after the one which caused the error,

RESUME LI NE . T
Junps to as specific line point in your main program "line" can refer
to either a label or a nornmal l|ine nunber. This may *MOT* be used to

re-enter a procedure!

Procedures are? treated slightly differently. If you want to junp to a
particular label,, you have to place a special narker sonewhere in the
procedure you are checking for errors. This nmay be acconplished using
the RESUME LABEL conmand. There & s two separate versions.

RESUVE LABEL | abel : o o

Defines the label which is to be returned after an error. This nust be
called outside your error handler just after the original ON ERROR PRCC
or ON ERRCR GOTO statenent. .

RESUME LABEL

Used inside your error handler to junp straight back to the [abel
you've set up with the previous comand. Exanples

On Error Proc HELP - _ _ S . . .
" Resune Label AFTER [/ - - . Me, e '
Error 12 S : .-
Print "Never Printed"
AFTER s Print "l1've returned here" LT
E n d L e e
Procedure HELP o .
Print "Ch Dear, | think there's an error!™ . ° : _
Resune Label e, _ .
Endproc : o T . T

=BRl (return the nunber of last error)
e=ERRN

If you're creating your own error handling routines using the ON ERRCR
command, you'll need to be able to check precisely which error has
occurred in the main program

When an error occurs,, ERRN is automatically loaded with its
identification nunber., See the Apeendix at the end of this manual for a

PR Y

P P T S A

full list of the possible errors.

Print BR

ERROR (generate an error and return to the Edi tor)

ERROR n

The action of the ERROR command is to actually generate an error,,
Supposing you have created a nice little error handling routine which
is able to cope with all possible disc errors. ERROR provides you with
a sinple way of simulating all the various problens, wthout the

i nconveni ence of the actual error. Exanples T

Error 40
Quits the program and prints out a "Label not defined" error.
Error Errn

This uses the ERRN function to print the current error condition after
a problem in your program

e w2 1 b A RT

e e

e g B

L

Y

8i TEXT AND W NDOWS

Text Attributes

PEN (set colour of text)

PEN i ndex R IR e

The PEN instruction sets the colour of all the text which will be .

displayed in the current window This colour can be chosen from one up

to 64 different possibilities depending on the gfx mode you're using

Exanpl es - g
PENG6 .

=-PEN$(n) (change the pen colour using ctrl chrars)
a$~- PEN$(n)
PEN$ returns a special control sequence which changes the pen colour
insidea. string. Thenewpencolourwi 11beautomaticallyassigned
whenever this string is subsequently printed on the screen,, Examples

C*=Pen*(2)+"White "+Pxn*(6)+"Blue" '
Print C$. _

The string returned by PEN$ is in the format.
Chr*(27)+"P"+Chr*(48+n) .« : _

PAPER (set colour of the text background)
PAPER i ndex

"index" can be a number between 0-63

=PAPERS$(n) (returh a control sequence to - e
set the paper colour) '

x$=PAPERS$(i ndex) 3 L _ L :_:. f :3” I

PAPER* returns a character string which automatically changes the
background colour when it's printed on the screen. For example:

Pen 1: C+-~Paper*(2) +"White "+Paper$(6) +"Blue"
Print C$ S _

I N\VERSE OV CFF (enter inverse nobde)

| NVERSE QN COFF

The | NVERSE commarid swapas the bexl amnd * ho b«k, ;ound Ol <siare.

87

88

e L L SR RE RSP ey

PP

[T —

SHADE ON OFF (shade all subsequent text)

SHADE ON OFF
SHADE ON hi ghlights your text by reducing the brightness of the

characters with a mask pattern,, The shade of your text can be returned
to normal using SHADE OFF o

UNDER ON OFF (set underline node)
UNDER ON OFF

UNDER X underlines your text when it's printed on the screen, UNDER
OFF turns off the node,

WRI TING (change text witing node)
WRITING W t, wW2] ee.L i’ ‘ _
The WRITING can {Rand allows you to change the witing node used for all
subsequent text operations. This determ nes precisely how your new text
will be conbined with the existing screen data.

wt=0 REPLACE (Default) Your new text will obliterate
anyt hingunder neat hi t,

W =i R Merges the characters onto the
- screen with a logical OR

w=2 XR : Chars are conbined now with XOR

w'=3 |IGNORE - | L Printing operations are ignored!

The secont nunber chooses which parts of the text will be printed on
the screen. This option can be onmtted if required.

w2=0 Normal The text is output to the screen along wth

- the background.
w2-=| Paper Only the background of the text is drawn on
the screen,
w2=2 Pen : I gnores the paper colour and wites the

, text on a background of colour zero.

Do *NOT* confuse this with GR WRI TI NG

part on the screen.

LOCATE (position the cursor) "

LOCATE x,y = S |

LOCATE x. Locate noves the text cursor to the coordinates x.y.

LOCATE .y This sets the ftartln% poi nt for all futurfz grln in
. operations. scree p03|t|ons are specifi ng

90

T T AR M A R

a special set of text coordinates,, These &'~ neadured in units of a
single character relative to the top left corner of the text w ndow,
For instance the coordinates 15,10 refer to a point 10 chars down and

15 to the right,, _ : _ S

If you attenpt to print something outside window limts an error wll
be generat ed.

Note that the current screen is always treated as w ndow 0. So you _
don't have to actually open a w ndow before using one of these _ -\
functions, , '

A10vE (relative cursor movenent)
CMOVE w; h

Moves the cursor a fixed distance away fromits present position. If
your cursor was at 10,10,, then typings

CMOVE 5, -5

would nove the cursor to 15,5. Like LOCATE you can omt either one of
the coordinates as required. :

=AT (return a 'sequence of ctrl chars 9
to position the cursor) -

X*=AT(X,Y) ' e

The AT function allows you to change the position of text directly from
inside a character string,, It works by returning a string in the
formt;

Chr f (27) +" X" +Chr * (27) +" Y" +Chr $(48+Y)

\Whenever this string is printed, the text cursor will he noved to the - .
coordinates x.y» For exanple:

A*="Thi s" +At (10, 0) +"1s"+At (I, 2) +"The Power Of "+At (20, 20) +"A | C5i "
Print A$ '

These AT commands &re perfect for hi-score tables as they allow you to
position our text once and for all during your prograns initialisation
phase. You can now update the score at the correct, point on the screen
using a single print statenent... Here's an exanples

H _SCORE*=At (20, 10) +"Hi Score "
SCORE-10000 . |
Print H _SCORE$; SCORE

Conversion functions

o mEEEToaRRImmmmEmr oI Tan

AMOS Basic provides you with four useful functions which readliy enable
you to convert between text and graphics coordinates.. :

=XTEXT(convertanxcoordi nategf x->textf ormat) 92

S

=YTEXT (convert an y coordinate gfx-->text format)

t AXTEXTCX)
t =YTEXT(y)

These functions take normal x/y coordinates and convert them to text
coordinates relative to the current window. |If the screen coordinate
lies outside this w ndow then a negatlve vaI ue will be returned. See
EXAMPLE 8. 1. . o

=XGRAPHI C (convert an X coordinate text-->gfx format)
=YGRAPH C(convertanycoordinatetext->gfxfor nat)

g=XGRAPH C(x) . e
g=XGRAPHI C(y) | ST -

These functions are effectively the inverse of XTEXT and YTEXT in that
they take a text X (or) Y coordinate ranging fromO to the w dth/height
of the current w ndow and convert them to absol ute screen coordinates.
See EXAWPLE 8.2 . '

Cur sor coi nnands

The text cursor serves as a visible starting point of all future text
operations, 11's usually displaved as a flashing horizontal bar, :
al though this nmay be changed using the SET CURS and CURS OFF conmands,.

By moving the cursor on the screen, you can position your text
practically anywhere you |ike. Renenber,, all coordinate neasurenents
are taken using TEXT coordinates relative to the current w ndow.

HOVE (cursor hone)

Moves the text cursor to the top left hand corner of the current wi ndow
(coordinates 0,0)

: CDOM (cursor down) R e,
CDQWN : S . I ' '

Pushes the text cursor down by a single Iline.

=CDOWN* (return a Chr$(31) character) ' -
x* =CDOVWA* :

CDOMN* is a function which returns a special control character which
automatically noves the cursor when it is printed. So Print CDOMNN* is
identical to CDOMN. CDOMNf al l ows you to conbi ne several cursor :
novenents in a single string. For exanples

Cc* . - "viucdo™ , * ’ : o P s
For A=0 to 20 : - S
Print C5 : oo\

S e

iy

Next A

CUP (cursor up)
P

Moves the text cursor up a line in the same way that CDOM npves down.

~sQP* (return a Chr*(30) character)
x* =CUP* '
CUP* returns a control string .which noves the cursor up by a single

character.

CLEFT (cursor |eft)
CLEFT : : '

Di spl aces the text cursor one character to the left,

=CLEFT* (Control string for CLEFT Chr*(2?))
x*»CLEFT* :

Moves the text cursor one character left. Wrks |ike =-QJF*.

CRI GHT (cUrsor right)
CRI GHT

Moves cursor one place to the right.

=CRI CHT$ (Generate a Chr*(28) control string for CRI GHT)
x* =CRI GHT* _ _ o -

I's the opposite of CLEFT*. = -

XCURS (return the X coordinate of the text cursor)
YCURS (return the Y coordinate of the text cursor)

X=XCURS _ : : . o
y=YCURS _ e Ce -

XCURS is a variable containing the current X coordinate of the text
cursos (in text format) ™ YCURS holds the Y coordinate of the cursor.

SET CURS (set text cursor shape)

SET CURS Ll .4L2,, L3, L4L5, 16,i...7,L8

This instructoin allow you to change the shape of the cursor to
anything you like. The shape is specified by a list of bit-patterns

94

95

ey

P

held in the paraneters L1-1L8, Each paranmeter deternines the appearance
of the horizontal line of the cursor,, luunbered fromtop to bottom

Every bit represnts a single point in the current cursor line. If
it's set to 1 then the point will be drawn using colour nunber 3 =
otherwise it will be displayed in the current PAPER colours,, Exanple:

LI =Sill11111

L2=211111110 ’ :
L3=X1i |1 1100 S _ ' .
L4a=:illl11 Q0 - ' '

L5=X11110000

L6=y.| 1100000

L7=£11000000

L8=7?U 0000000

Set Curs LI , 12, 13,14, L1546, ,L?,,LS

CURS ON OFF (enabl e/ di sabl e text cursor)

CURS K) makes text cursor visible
CURS COFF hides the cursor in current w ndow

MEMORI ZE X/'Y (save the X or Y
coordi nates of the text cursor)

MEMORI ZE X
MEMORI ZE Y
The Menorize commands store the current cursor position,.
REMEMBER X/ Y (restore the X or Y ' : . 96
coordinate of the text cursor) : : :
REMEMBER X
REMEMBER Y

REMEMBER positions the cursor at the coordinates saved
by a previous call to MEMORI ZE, |If MEMORI ZE has not been
used then the coordinates will be set to zero. See EXAMPLE 8.3 .

CLIME (clear part or all of the current cursor Iine)

CLIME En] . _ .

Clears the line on which the cursor is positioned. If n is present then
"n" characters & & cleared starting at the current cursor position,. -;

n >
CURS PEM (choose a new colour for the text cursor)
CURS PEWn

Changes the colour of the text cursor to index nunber n.

Text | nput/ Qut put .

R e vt

T

CENTRE (print a line of text centred on the screen)

CENTRE a*

Takes a string of characters in a* and prints it in the centre of the
screen. This text is always output on the current cursor line.,

Locate 0,1
Centre "This is a centered TITLE"

=TAB* (print tabul ation)

x$- TAG*

TAB* returns a control character known as a TAB (Ascii 9), Wen this
character is printed the text cursor will be inmmediately noved several
places to the right- The size of this movenment can be set using the SET
TAB kommand. As a default., the tab spacing is set to four (4),,

SET TAB (change the tabul ati on)
SET TAB n S

This specifies the distance the text cursor wll nove when TAB
character is printed. o,

REPEATS (repeat string) ..
x$=REPEAT* (a$, , n) ' : Ce L% . Yors

The REPEAT* function allows you to print out the same string of
characters several times using a single PRI NT statenent,,

It works by adding a sequenve of control characters into variable X$.
Wien this string is printed,, AIC sinply repeats a* to the screen n
ti mes. Possible values for n range between 1 and 207. See EXAMPLE 8. 4.

The format of the control string iss

Cherd {271+ RO +68+Chrd (2714 R"+Chr${48+4n)

ZOhEt (set up a zone around a piece of text)

x$=INES{at,)

-F .
The ZAKIE$ function surrounds a section of text with a screen zone.
After you have defined one of these zones you can check for coillisions
between the zone and the nouse using the ZONE function. This allows you
to create powerful on-screen nmenus and di al ogue boxes without having to
resort to any conplicated programmng tricks.

i

a* is

a string containing the text for one the "Buttons" in your

di al ogue box. This button will be activated automatically when you
print x$ to the screen.

n specifies the number of screen zone to be defined. The max. nunber
of these zones depends on the value you specified with RESERVE ZONE.

See the EXAMPLE 8,5 program in the MANUAL folder,, The format of the

control string is:
Chr*(27) +"ZG' +A$+Chr *(27) +"R" +Chr *(48+n) ,
BORDER* (add a border to some.text)
X$:BG?DER*(a*, n) . o 'o_'oc_

This returns a string of control characters which instructs AMOS to
draw a borcler aound the requi red tex t. 11' s common 1 y used in
conjunction with the ZONE* command to produve the fancy buttons found

in dial

Ris

ogue boxes and alert wi ndows. o .

the border nunmber ranging from 1 to 16 and a$ holds the text to

be enclosed by the border. The text in a* will start at the current

cursor

position so don't be surprised when you get strange results

printing at 0,0. To create a screen zone by a border try this:

Print Border$(Zone$(" CLICK HERE ", 1).,2)

This would enclose the text with zone nunber 1 and border 2» The

control

HSCROLL

sequence isx
Chr $(27) +"EG' +A*+Chr * (27) +" R" +Chr $(48+n)

HSCROLL (horizontal text scrolling) . .

n . ° . ' _;;I. _ ° . .

This scrolls all the text in the currently open w ndow horizontally by
a single character position, n can take the follow ng val ues;

Scrolls

1 = Move current line to the left

2 = Scrolls entire screen to the |eft
3 = Mwve current line to the right

4 = Move screen to the right

VSCROLL (vertival scroll)

n
the text in the currently open wi ndow vertically.

1 = Any text at the cursor line and below is scrolled down

2 -- Text at cursor line or below is mved up _

3 - Only text fromthe top of the screen to the cursor line
is scrolled up

°>~-- Text fromtop of the screen to the current cursor position
i sscrolleddown

Blank lines are inserted

90

AT

e .

[

i

to pad out the gap left by the scrollingoperation.:

W ndows

The AMOS wi ndowi ng commands al | ow you to restrict your text and

‘graphics operations just a part of the current screen.

AMOS wi ndows can be used with the zone conmands to produce effective
di al ogue boxes such as file selectors and high score tables., A typical
war ni ng box, for instance, can be easily generated with just a couple
lines of AMOS Basi c. :

W NDOPEN (create a w ndow) - /I ’
WNDOPEN n, X, y, w, h [,border [,set]]

The W NDOPEN instruction opens a wi ndow and displays it on the screen..
This window will now be used for all subsequent text operations,,

n is the nunber of the wi ndow to be defined,. AMOS allows you to
create as nmany wi ndows as you like,, limted only by the anmount of
avail able menmory. As a default, w ndow nunber zero is assigned to the
current screen. So don't allenpt to re-open this w ndow usi ng W NDOPEN
or change it with WND SIZE or WND MOVE. S :

X,y are the graphics coordinates of the top left hand corner of your
new w ndow, Since AMOS wi ndows are drawn using the Amiga"s blitter
chip, the window area, nust always lie on a 16-pixel boundary. In order
to achieve this, the x coordinates are automatically rounded to the
nearest multiple of 16. Additionally, if you ve included a border for
your wi ndow, the X coordinate will be incremented by a further eight.
This will ensure that the working area of your w ndow al ways starts at
the correct screen boundary. There are no restrictions whatsoever on

the y coordi nates. . . . - . , y

w, h specify the size in characters of the new w ndow, These
di nensi os nust always be divisible by 2.

"border" selects a border style for your wndow,, There AY' B 16
possible styles, with values ranging between 1 and 16,, :

W ndow borders can also include up to two optional title lines. One
title is displayed along the top of the w ndow and another may be added
at the bottom

AMOS wi ndows may contain either text or graphics, just like the o
intuition system Each w ndow can be assigned it's own individual
character set with the powerful WNDON FONT command. There's also a
powerful WND SAVE instuction which saves the screen area inside your
wi ndows. Wenever you nove one of these wi ndows the contents underneath
will be automatically redrawn. For exanple;

For W&i To 3
W ndopen W (WI 3*96, 50, 10, 101 :
Paper W3 : Pen W6 : CQw _
Print "Wndow "; W '
Next W

. You can flick between these wi ndows usi ng .the WNDOW command. Try

100

(L)

typing the following statements from the Direct nodes

Wndow 1 : Print "AMOSH
Wndow 3 s Print "in action!"”
Wndow 2 : Print "Basic"

The active w ndow can always be distinguished by a flashing cursor
through this can be turned off using the CURS Q& command if required,:

W NDOW FONT (change wi ndow font)

W NDOW FONT n

Changes the font used by the current window to set n. n is the nunber
of a graphics font which has been previously installed with the GET
FONT command. This font Krust* have dimensions of exactly 8x8,
Proportional fonts are not allowed. .

Since the window vhorders make use of some of these characters, you. :
fli ayqgetrat her oddresullswhenyau' reusingst andardWenchf onts.

WND SAME (save the contents of the current w ndow)

W ND SAVE . ceeree

The WND SAVE command allows you to nove your wi ndows anywhere on the
screen without corrputing your existing display. ’

Once you've activated this feature,, any w ndows you subsequently open
will automatically save the entire contents of the w ndows underneath,
This area will be redrawn whenever you close a window or nmove it to a
new position™

[t's inportant to note that this option saves the contents of the
current window,, rather than the one you are defining with WND OPEN

At the start of your program the current w ndow will be the default -
screen and wi 11 take up a nmmssive 32k of nmenmory. If you wi shed to save
the background underneath a dialogue box the nmost of this nenory woul d
be conpletely wasted., :

The solution is to create a dunmmy w ndow of the required size, and to
position it over the zone you wish to save. You can now execute a WND
SAVE command and continue with your program as nornal,,

Wen you subsequently call up your dialogue box the area underneath
will be saved as part of your dummy window. So it will be automatically
restored after your box has been removed,,

BORDER (change the window border of the) ' - 101
- current screen) " |
BORDER n, paper, pen

Tho BORDER command sets the border of the:- current window to styles?

nunber n. This border is drawn using a group of characters installed in
the default-font,, It is therefore possible to create your own border

.

styles using the font tie finer accessory.

The paper and pen options allow you to freely choose the colours of
your border- Acceptable border nunbers range from 1l to 16.

> Any of the paraneters may be omtted from this instuction so the

following conmands are |egals

BORDER 2, ,
BORDER 2,.,3

TITLE TCP (define the upper title for
the current w ndow) .,

TITLE TOP t3%

This instruction sets the top line of the current window to the title
string in t$. Only bordered windows fray be titled in this way,

W ndopen 5,1,1, 20, 10 _ ,

Title Top "Wndow Number 5"
Wait Key \,

TI TLE BOTTOM (define the lower title for
t hecv, r rent wi ndow)

TITLE BOTTOM b$

This command assigns the string b$ to the bottomtitle of the current
wi ndow. '

W NDOW (change current w ndow) . . ; 102
WINDOW n ') C ¢
WNDOW activates the window n as the current window |If the automatic

saving system has been initiated, this wi ndow be imediately redrawn
along with any of its contents. See EXAMPLE 8.6 in the Manual folder.

‘=W MDON (Return the value current window) .
w=WI NDO W

WNDON returns the identification nunber of the currently active
w ndowy , .

WND CLCSE (close the current wi ndow)

WND CLOSE

I>KX& t.er-in +11K <; *%r 1 «?r\ t. ">j.rid w,. U~*e? - I-.e? WXKtI> H AVIIY g &mtr. "n<.i 4

araathatwashiddenberedrawnby,

WI. NDR OVE(moveawi ndow)

W NDMOVE X,y

W ndnove noves the current window to graphics coordinates %y. As wth
the original w ndow definitions the X coord| nate will be rounded to the
nearest 16-pixel boundary,, :

WND SIZE (change the size of the current w ndow) o 103

WND SIZE sx,sy . : : : .

This command changes the size of an AMOS wndow,, The new sizes,, sx and
sy, are specified in units of a single character,, Sx must be divisible
by two,, See EXAMPLE 3.7. S :

I'f you've previous!/ called the WND SAVE command, the ori ginal _
contents of your window will be redrawn by this instruction. If the new
window is smaller than the original one, any parts of the inmage which
lie outside will be lost. Aternatively,, if you' ve expanded your
wi ndow, the area around your saved region will be filled with the
current paper colour. Also note that after a WND SIZE conmand the text
cursor is always reset to coordinates 0,0,

aw (clear the current window)
CLIti .

Erases the contents of the current window and fills it with the cur-rent
PAPER col our.

Slider bars o ' - | . _. o 104'

AHOS incorporates three |nsturct|ons which all ow you to displ ay a
standard slider bar on the screen,, These sliders cannot be manipul ated
directly with the nmouse. In order to create a working slider bar,
you'll need to wite a small Basic routine to perform this operate in
your main program Due to the sheer power of the AMOS system this is
ext remelyeasyt oaccof npli sh, andther esullscanbeext remely
inpressive,, as can be seen from EXAMPLE ELS. -

HSLIDER (draw a horizontal slider)
HSLI DER xI,yl OT x2,y2, total, pos,, size

Draws a horizontal slider bar fromxl,yl to x2,y2. "total" is the _
number of individual units which the slider will be divided into. Each
unit represents a single itemin the object you are controlling wth
the slider. TSo in the editor wi ndow, "total" would be set to the
number of lines in the current program The size of each unit is
calculated from the followi ng fornula;

(X2-X1)/ Tot al

.ok« s thp position of the slider box from the start of the slider
measured in the units you specified using "total",_ "size" is the lengtn
of the slider box in the previous units,, See tXftMLbti.y.

VSLIDER (draw a vertical slider)

VSLIDER xI,yl TO x2,y2, total ,pas:,5ize ,
VSLIDER is almost identical to the previous HSLIDER insturction. It
displays a sinmple slider fromxl,,yl to x2,y2. See EXAMPLE 8. 10

SET SLIDER (sets the fill patterns
used in a slider)

SET SLIDER bl, b2, b3, pb, sl > 52,53, ps ' : _ : e

Al though this command |ooks incredibly conplicated, it's actually
rather simple. SET SLIDER enters the colours and patterns to be used in
the slider bars created with the H VSLIDER commands

"bl,b2,b3" set the ink,, paper and outline colours for the background
of the box, "pb" chooses the fill pattern to be used for these regions. 105

"sl,s2,s3" input the colours of the slider box, and "sp" selects the
pallernitistobefilledwith

"bp" and "sp" can be any fill patterns you wish,, As usual, negative
value refer to a sprite imge from the current sprite bank,, This allows
you to create amazing colorful slider boxes.

Fonts

There are two different types of fonts available in AMOS - text fonts -
and graphic fonts. The text fonts Are those used by the PRINT and.

W NDOW commands. Text fonts are known as character sets and each ARCS
Basic window can have its own individual set. The graphic fonts Are
much more flexible and offer a wider range of styles:

Graphic text

Your Ami ga conputer is capable of displaying an inpressive variety of
different text styles,, The original WorkBench disc was supplied with
eight attractive fonts in a range of sizes, and many nore of these
fonts are freely available from the public domain- |f you've upgraded
to WorkBench 1.3, you'll also be able to design your own fonts using
the FED program on the Extras disc. ’

Al OS provides you with total support for these fonts. Text can be
printed in any of the available typefaces at any point on the screen

AMOS fonts can be used to add spice to even the nmost Basic ganmes.
These Are invaluable for producing the loading screens aid hi-score
tables in your ganmes,, So it's a good idea to make full use of them in
your progs.

L S e o T

TEXT (print graphical text)

TEXT x,y,t*

TEXT prints a line of text in t* at graphical coordinates x,y. Al
coordi nates are neasured relative to the characters baseline. This can
be deternmined using a special TEXT BASE function.

Normal Iy the baseline is positioned at the bottom of the character,
but sone |owercase letters., such as "g", have a "tail" which extends
slightly below this point.

As a default the type styles is set to ei ght - poi nt Topaz,, This nay be
changed at any time using the SET FONT instruction. Try the follow ng

program and notice how text can be placed at any pixel position on the
Screen. ,.-%°%°

Do

I nk Rnd(15) +1 , Rnd(15): Text Rnd (320H1 , Rd (198) + 1,.," AMOS Basi ¢
Loop

A so notice how the colour of your text is set with INK rather than
the expected PEN and PAPER commands. This enphasizes the fact that the
TEXT command is basically a graphical instruction. So the control '
sequences created by functions like AF$ will be printed on the screen
instead of being correctly interpreted.

There is no automatic line feed when the text reaches the end of the
current window. If you attenpt to print sonething too large,, the text
will be neatly clipped at the existing screen boundary. This can be
seen by the exanpl e bel ow ' ' '

Print String*("A%l00): Text 0,100, String*("A", 100)

CGET FONTS (create a list of all available fonts)
GET FONTS N

The CGET FONTS command creates an internal list of the all fonts

avai lablef ramthecurrent star tee-ypdisc, Thislist isessentialtothe
running of the SET FONT command, so you should always call GET FONTS at
| east once before attenpting to change the present font setting. The
contents of this list can be exam ned using the FONT* function.

WARNING In order for GET FONTS to work,, your current AHOS work disc
nust al ways contain a copy of the standard LIBS folder along with its
contents. It's inportant to remenber this fact when you ars
distributing run-only or conpiled prograns because unless your discs
contain the required files, AMOS Basic will alnost certainly crash!

GET DISC FONTS (create a list of the disc fonts)

GET DI SC FONTS " X

This command is identical to the previous GET FONTS instruction except

that it only searches for fonts on the disc. These fonts are contained
irn+hGFOKTe-F»>ldoKeliyau,-,. v-te.-e>+boa+tdi dc. I fyauwiliztdldl ou-d «wy<ur
own fonts with AMOXS basic, you'll need to copy these onto your nornal
start-up disc. See the manual supplied with your Amga for'details of

jug

107

this procedure..

CET ROM FONTS (create a list of the rdfl fonts)

GET ROM FONTS produces a list of the fonts which &e built into Armiga's

rdfi chips,, At the present time there are just two of these fonts:
Ei ght - pai nt Topaz and ni ne-poi nt Topaz.,

=FONT$ (return details about the available fonts)
aduFONTSE(R)

Returns a string of 38 chars which describes font nunber n. This

function allows you to examine the font list created by a previous call

to one of the GET FONT conmands.

a* contains a list of characters which hold the nane and type of your

font. If a font does not exist,, a* will be loaded a null value "",
otherwise a string will be returned in the following fornats

Char act er Descri ption _ !
1-29 Font nane
30-33 Font hei ght

34- 37 Identifier (set to either Disc or Rom

See EXAMPLE 8. 11!

SET FONT (choose a font for use by
the TEXT instructi on)

SET FONT n

SET FONT changes the character set used by the TEXT conmand to font
nunber n. |If the font is stored on the disc it will be automatically
|oaded into your Amga'"s nenory. At the sane tine any previously sets
which are not in use will be renoved,, See EXAMPLE 8. 12.

SET TEXT (set text style)

SET TEXT style

Allows you to change the style of a font,. There are three styles to
choose from "style" is a bit pattern in the following fornats

Bit Effect

0 Underl i ne By setting the appropriate bits in this
1 Bol d pattern you can choose between a total
2 Italic of eight different text styles,,

=TEXT STYLE (return the current text style) _ S\

108 -

109

T T T

R,

JROUITRERE

s=TEXT STYLE

This function returns the text style set from the SET TEXT command. The
r-psiilt in "s" is a bit-map in the same format as that used by SET TEX!.

~TEXT LENGTH (return the length of a section
of graphic text)

WETEXT LENGTH(t *)

The TEXT LENGTH function returns the width in pixels of the character
string a* in the current font,, The width of a character varies '
depending on the size of your fonts. In addition., proportional fonts
such as Helvetica assign different widths for each individual
character.

=TEXT BASE (return the current text base)

b=TEXT BASE) .
This function returns the posit'i on of the baseline of your font. The
baseline is the nunber of pixels between the top of a character and
point it will be printed on the screen,, 11's basica 11 y sim 1 ar to the
hot spot of a sprite or bob, -

Installing new fonts

If you wish to use your own fonts within AMOS Basic, you'll need to
install them onto a copy of your AMOS program disc. The basic procedure
is as follows:

Copy the required font files into the FONTS, directory of your boot-
di sc.

Further information can be found in the Extra"s manual supplied with

the Workbench 1,3 upgrade.,

—
—
o

it =
(=3

H{
[12)

shoot i ng

Problem CET FONTS seens to ignore any of the fonts on the current
disc.

Sol ution: You've propably removed the original boot disc from your
default drive. The Amiga's library routines expect to find
the FONTS; directory on your start-up disc. This can be
changed using the ASSIGN program in the UTILITIES fol der,,

Problenms GETFONTScr ahestheAmi gacomplet ely,

Solutions This problem can easily occur when you're creating prograns
in run-only or conpiled format. GET FONTS requires the
discfont,, library in the LIBS folder in order to work.

Problens The SET FONT command returns a "fonts not exam ned" error,,
Solutions Add a cal to GET FONTS to the start of your program.

110

Cam

+ e e 1 S T

9sMATHS FUNCTI ONS 111

AMOS Basic includes a wide variety of the nore comonly needed

mat henati cal functions. To conserve nmenory, AMOS uses the standard
Amiga library routines., The appropriate libraries will bs | oaded
automatically from your workbench disc: the first tine you call one of
these functions in a particular session., You should therefore ensure
that the current disc contains the file MATH RANS,, LIBRARY in the LIBS
f ol der.

Trigononetri ¢ functions

The trigononetric functions provide you with a useful array of -
mat hemati cal tools. These can be used for a variety of purposes, from
education to the creation of complex nusical wabeforns.

. _ _ DEGREE (use degrees)
DEGREE N

Cenerally all angles are specified in radians. Since radians are rather
difficult to work with, it's possible to instruct AfIS to accept angles
in degrees. Once you've activated this feature any subsequent calls to
the trig functions will expect you to use degrees.

RADI AN (use radian neasure)
RADIAN ' B . e :

THe RADI AN directive informs AMOS that all future angles are to be
entered using radians - this is the default.

, ' =Att (a constant 'PI) ' , -
att=plg o : D e

This function returns the nunber called Pl which represents the result
of the division of the dianeter of a circle by the circunference,, Pl is
used by nost of the trigononetric functions to calculate angels. Mte
that a $ character is part of the token nanme! This is to avoid clashes
with your own variabl e nanes.

= SI.\IN. (sine)

s#=SI N(a) . S P .";°"
sH=BTIK{ all) :

The SIN functions calculates the sine of the angle in n. Mte that the
function always returns a floating point nunber. '

=¢(@B (cosine) 112
c«=Q0(a| | »3)

s

The cosine function conputes the cosine of an angle,,

=TAN (tangent)

*

tH=TAN(a[8])

TAW generates the tangent of an angle. . I

=ACOS (arc: cos) - \

c»=ACOS(n8) | _ R o .

The ACOS function takes a nunber between -1 and +1 and calculates the

angl e which would be needed to generate this value with CQOS.

Note, we haven't provided you with ASIM because it's not really

needed, It can be readily com put (d using the fornula:

ASI N(X) =90- ACQS(X5 s Rem Measured in degrees. C,

ASIN(X) = 1.5703-ACOS(X) i Re«i wusing radians ' -
., ' _ATAN (arc: tangent) B _'
t HEATAN(nt t) A T

ATAN returns the arctan of a number.

=HSIN (hyperbolic sine)
sH=MEIN{aLH]]} | o |
HSIK' conmputes the hyperbolic sine of angle a.

|

o ' 5 =HCO0S (hyperbolic cosine)

c«=HCO0S(a[tn)

HCOS cal cul ates the hyperbolic cosine of angle a.
, =HTAM (hyperbolic tangent.)' o

t »=HTAN(aL" H3) e _ T oty

HTAN returns the hyperbolic tangent of the angle a.

:=1.08 (logarithn)

ta nd a r d m t em at i cal func 't 4. ons

114

rtt=L06(Vv[»])

LOG returns the logarithmin base 10 (log 10) of the expression in vfi.

=EXP (exponential function) e

rfo= EX(ett) ety
Cal cul ates the exponential of €t,, Exanple: o f:,_ ' I
PrintExp(1) o ' B ":“7: T -

(result : 2,71828) e e CLe

: C =LN (natural |ogarithm L.
re LW)

LM conputes the natural of naperi an | ogarithm of Itf.

=SQR (square root) ,] o . i '_;' ..-;
sH=S0R(v[#]}

SQR calcul ates the square root of a number.

=ABS (absol ute val ue) e 115
r=pBS{viH])

ABS returns the absolute value of v, taking no account of its sign.

=INT (convert floating point nunber to An integer)
i=INT (v}
INT rounds a floating point nunber in v down to the nearest whole
i nt eger. : e o <
i =S6N (find the sign.of.é nunberj
5=GON(VIAT) | | |

SGW returns a value of representing the sign of a number. There are
three possibilities, '

. -1, if v is negative = _ .
0, if vis zero Co e T
1, if v is positive , o -

Creatingrandornsequences

|
'W“#ﬂﬂﬁﬂgﬁmwj

RM (random nunber generati on)

RN\D generates a random integer between O and n inclusive,, But if n is
less than zero, RND will return the last value it produced,, This can be
very useful when debuggi ng one of your prograns,,

RANDOM ZE (set the seed of a random nunber) .

RANDOM ZE seed x - Ly
In practice, the nunbers produced by the RID function Are not really
random They'ris conputedinternallyusi ngaconplex mat hemati cai
formula. The starting point for this calculation is taken from a nunber
known as the "seed". This seed is set to a standard val ue whenever you
load AMOS Basic into the conputer. So the sequence of nunbers generated
by RND will be exactly the same every time you run your game!

The RANDOM ZE command allows you to set the seed value directly,,, so
that the nunbers would really look like random every time.

"seed" can be any value you wish. In order to generate a. true random
nunmbers, you need sone way of varying the seed from gane to game. This
can be achieved using the TIMER instructions

Random ze Ti ner ' ‘ _ *

TIMER is a Basic function which returns the anmount of tinme which has
el apsed since your Amiga was switched on in the current session,, Al
timngs ars neasured in units of a 50th of a second.

=11 AX (get the maxi mum of two val ues)

FefAX (K, y)

rH=MaX (i, v#) : :

r $=MAX(x$, y9) MAX conpares two expressions and returns the |argest..
These expressions can be conmposed of nunbers or

strings of characters, providing you don't try to nmx different types

of expressions in one instruction. :

Print Max(10, 4) _ : .
(result s 10) . . _ -

=M N (return the mnimm of two val ues)

+

r=M N(x,y) o oo
rE=MRIMN{xH,vH)}

r$=M N(x$sy$) This works the same way the =MAX does, except returns
' . . the m ni mum val ue of conpared nunbers/strings.

SUAP (swap the contents of two variabl es)

116

117

SWAP X,y

SWAP x« ,ytt
SWAP x$,,vy$ Swaps the data between any two variables of the sane
type.
FIX (set precision of floating point output)
FI X(n) -. . ._.. . ; o ' e e ' E M - P .;
Changes the way your floating point numbers will be displayed on the

screen or printer. There Are four possibilities,,

If &n<3.6 then n denotes the number of figures to be output after
thedeci malpoint,,

[fri>16thepri ntoutwillbeproporti onalandanytrailingzeroswill
be removed,

[f n<0 Then all floating point numbers will be displayed in
exponential format, and the absolute value of n will
determne the number of digits after the decimal point.

[f n=16 then the format will be returned to normal

Fix(-4) : Print Pl#

.- DEF FN (create a user-defined function) , "
DEFFNname[(1i st)j-expression _ o .

The DEF FN command lets you create your own user-defined functions
within an AMOS Basic program These can be used to compute commonly
needed values quickly and easily™ .

"nane" is the name of the function you wish to define, "list" is a
set of variables separated by commas. Only the type of these variables
is significant. When you call your function, any variables you enter
with, will be automatically subsituted in the appropriate positions.

"expression" can include any of the standard Al OS functions you wish.
Like all Basic expressions, it's limted just to a single line of prog.

:,'.:- FN.(caII a user--defined f.unction)
FNname[(variableli st)3
FWexecutes a function defined using DEF FN. Examples
Def Fn Asin(X)=?0-Acos(X)

Degree
¢ Print Fn Asin(0,, 5)

118

.

10s SCREENS a 119

The default screen

Whenever you run an AMOS Basic: program a default screen is created as
screen zero. This forms a standard display which WI|| be used for all
your normal drawing operations,. : : :

The system defaults to a 16-colour screen with dimensions 32()x200,
which can easily be altered from within your program In addition,, you
can also define up to seven further screen with power SCREEN OPEN
command. ,

- SCREEN OPEN (open a screen)
SCREEN OPEN n, w, h, nc, nods

SCREEN OPEN opens a screen,, and reserves sone nenory it,, The new screen
will now be used as the destination of all subsequent text and
graphi cal operations in your program

n is the identification number of the screen which is to be created
by this instruction. Possible values range fromO0-7. |f this screen
already exists, it will be totally replaced by your new definition.

w holds the width of the screen in pixels. This is not |limted to the
physi cal size of your display. It's perfectly lefal to define extra
| arge screens which nmay be nanupul ated using SCREEN OFFSET.

h sets the height of your screen using the sane system, Providing
you' ve enough nenory, you can easily create screens which are nuch
larger than the visible screen area. These screens can be used in
conjunction with all the normal screen operations. So you can construct
your inages off-screen,, and scroll theminto view with the SCREEN
OFFSET command.

nc requests the nunber of colours required for the new screen. The
range of available colours varies from2 to 64 (EHB). You can also
access the Amga's special HAM node with a val ue of 4096.

node" allows you to choose the width of the individual points on the
screen. The Amiga supports screen widths of either 320 or 640 pixels.
You can select the required width by setting "node" either LOARES (0)
or H RES ($8000).

Here's a list of the possible screen options along with an indication
of the anmount of nenory they consune.

Col ours Resol ution IVErmry Not es 120

2 320 x 200 8 k Paper =0 Pen I Crsr=l, no flash
640 x 200 16 k " "

4 320 x 200 16 k Paper=l Pen=2 Crsr=3, flash=3
A J oveiToo T 15 1° M n " "

8 320 x 200 24 k

it 1] L]]

640 % 200 48 k

16 320 X 200 32 k This is a default screen O
640 X 200 64 k '

32 320 x 200 40 k

64 320 x 200 48 k Extra Half-Bright node (EHB)

4096 320 x 200 48 k Hold and Mdify node (HAH)

Note that the menory sizes in the table only apply to a standard
screen. If you create taller of w der screens, the anount of nenory is

consuned will obviously be considerable greater., Screen zero is
equi val ent tos

SCREENGPENOQ., 320, , 200, 16, , Lowr es S N e

-.,.'." SCREEN (LCBEl (erase a screen)

SCREEN CLGSE n

SCREEN CLCSE del etes screen nunber n, and frees the nenory for use.

AUTO VIEW ON OFF (control view ng node)
AUTO VIEW OFF -,

WHen you open a scréer] usi ng SCREEN OPEN the new screen is usualyy
di spl ayed inmmediately. This can be very incovenient during the
initialisation stages of your prograns,, o

The AUTO VI EW OFF .command provides you with full control over the
updating process, It turns off the automatic display system copletely.
You can then update the screen display at a convenient point in your
program using the VIEW instruction-

AUTQ VIEW ON activates autonmatic screen updating.

Coomlee e " DEFAULT (reset screen to its default)
DEFAULT o

Closes all current open screens 3,nd restores the display back to its
original default setting. Exanple: A

Load Iff "ApiQS_.DATAsIFF/Affiospic.IFF%0
Wait Key R
Defaid ' '

o VIEW (display the current screen settings)
ViIEw : .

Di spl ays ahy chahgés to the current screen settings at the next

vertical blank pe>riod. You only have to use this command when AUTOVI EW
is OFF.

121

Special screen modes
The colour of every point on the screen is determned by a value held
in one of the Amiga's 32 colour registers. Each register can be |oaded
from a selection of 4096 different colours,,

Al'though 32 colours may seem rather a lot, particularly by ST
standards, it wasn't enough for the Am ga's designers. The easiest
solution would have been to increase the number of colour registers,
but this was quickly ruled out from reasons of cost,,

Instead, they invented two special graphics modes whi ch cleveroly S22
exploited the existing registers to increase the maximum number of
colours on the screen.

You've propably encountered theSe'nndés'aIreadyJ'They're the infannus
Extra Half Bright and HAH modes. AMOS Basic provides full support for
both HAM and Half Bright nodes., Here's a brief explanation.

Extra Half Bright mode (EHB)

Doubl es the maximum colours on the screen to a grand total of 64. It
works by generating two colours for each of the 32 possible colour
registers. .

The first 32 colours load the colour value directly from one of the
registers, EachregistercontainsavaluebetweenOand4095whichsets
the preci se shade of the final colour.

The second group of colours, with numbers from 32 to 63, take one of
the previous registers and divide its contents by two. This produces 32
extra colours which are exactly half as bright as the normal colour-
registers,, ' } h '

In order to exploit EHB mode to the full, it's necessary to load the
32 registers with the brightest shades in your palette,, This wil
automatically generate a list of intermediate tones in colours 32-63.
Aside from t

Hold and Modigy mode (HAM)
TheAmmiga' shardwarecurrenllylimitsyoutoamaxi mumofsi xbit

pl anes per screen. This allows you to display up to 64 different

colours on the screen at once. If you wanted to display a photograph iz
though, you'd require hunderds or even thousands of colours on the

S Croeen . '

]

This was the problem faced by Jay Mner when he was designing the
Amiga's display system H's solution was to exploit a trick which has
been known by artists for centuries. If a professional aritst had to
take every conceivable colour on an assignment,, he would be faced wth
an impossible task. It's therefore common parctice to nmx the exact
shade on the spot, out of a small set of basic colours. This provides
mllions of potential shades, without the need to carry several Ilarge
lorry loads worth of paint. The same technique can also be applied to a
conputer screen. Instead of specifying each colour individually, you
can take an existing colour and nodify it slightly. This increases the
nunber of available colours tremendously,, and fornms the basis of the
Amiga's powerfl Hold And Mdify node. “

Each colour value on the Amga is created froma mxture of the three
separate conmponents. These deternmine the relative strength of the

primary colours Red,, Green and Blue in the final colour, Possible
intenses range from 0 to 15,

Ham mode splits the' Am ga's colour values into four separate groups

t Colour registers 0-15:; The first 16 colour take a value directly
froTi a colour register. These colours are
treadted just like those on a standard 16 colour screen

* Red components 16-31s However,, if a point is set to a colour
nuinberintherangel6t o031, thecolour

value is loaded from the pixel to its immediate left.
The Red component of this colour is now replaced with a
value from 0 to 15 which is calculated from the formul a:

Intensity=Col our indéx - 16

t Green components 32-47; Simlarly, a colour number from 32 to 47
takes the current shade, and changes the
green component,, The intensity of this component is set

to a value of colour - 32n

* Blue components 48-63; These colour numbers grab the colour value
from the point on the left of the current
pi xel, and load a new blue component from your col our
number |ike so:

Intensity ~ Colour Index - 48 el e

The colour of a particular point therefore depends on the colours of
all the points to the left of it. This allows you to create smooth
gradi ations of colour which Are ideal for flesh tones. However, you
can't choose the colour of each point on the screen independently. In
practice, it takes a maximum of three pixies to shift from one col our
to another. : :

VWhen the Amga was first released, Ham initially was regarded as
little more than curiosity. Nowadays, the situation is very different
with the advent of excellent Ham graphics packages such as Photon
Pai nt ,

AMOS allows you to perform the full range text and graphics
operations directly on to a Ham screen,, EXAMPLE 10.1 provides you. with
a simple example of how you can generate an entire screen in just a few
lines of Basic code.

Anot her point to consider, fé that Ham screens ar& manipul ated using *
the normal SCREEN) DI SPLAY and SCREEN OFFSET commands. Here are some
simple guidelines to their uses

t The first point in each horizontal line should be set to a colour
number from 0 to 15. This will serve as the starting colour for all
the shades on the current line.

*Don'tallempttosuhjectyourHamscreenstohorizontalscrolling.,
[f you try to scroll one of these screens, you'll get colour fringes
at the sides of your picture. These are generated by the changes in
the starting colours for each line. There are no such restrictions
toverticalscrolling.

* 1'ringing e ffa=-t« <=2r> »lw> fc «, p-<<Jut»»t L> S3cP EElL-1 coFY . T|.>IS Sain’ldai
is to ensure that the border of your zone is drawn using a col our
fromO to 15. This will ensure that your Ham screens will be redrawn 124

T o n e e At e el

at their new position with their original colours,

Loadi ng a screen

LOAD IFF (load an IFF screen from the disc)
LOAD IFF "filename"[,screen]

Loads an IFF format picture from the disc, "Screen" indicates the
nunber of the screen which is to be loaded with your picture. This
screen will be opened automatically for your use?, if it didn't exist,
Anything already inside your screen will be totally erased.

To load the picture into the present” screen, onit the "screen"
parameter altogether.

Exanpl es

Load [ff "Af!0S. .. DATASI FF/ AF10SPIC I FF', i

SaV|ng a screen - I ' _ _- ,

SAVE |FF (save an |FF scree)
SAVE |FF "filenane"[, conpression]

Saves the current screen as an IFF picture file on the disc,
"conpression” is a flag which allows you to choose whether your file
will be conpacted before it's saved,, A value of one specifies that the
standard file conpressiong systemis to be enployed and zero saves the
picture as it stands,, As a default all AMOS screens are conpressed.

SAVE | FF automatically appends a small |FF "chunck" fo your picture
file. This stores the present screen settings including SCREEN DI SPLAY,
SCREEN OFFSET and SCREEN HI DE/ SHOW Wen you load this file back into
AMOS Basic it will be returned to exactly its original condition. This
extra IFF data will be conpletely ignored by external graphics packages
such as DPaint 3. o : b :

Note that it's possible to save double buffered or dual pi ayfield
screens with this command. - Sy _ /-- '

SCREEN DI SPLAY (position A screen)
SCREEN DI SPLAY n [, X..Vy, W h]

Once you have defined your screen with SCREEN OPEN, you'll need to
position it on your screen. Unlike nost other computers, the Amiga is
capabl e of displaying a picture anywhere you like on the TV screen.

Thi s can be easily exploited to nr-adut-e. amazi ng " boun,-.i ng" s"oon

RS Ton W 40 ANOT Fapbipd t (2BVERaPTE=ibie to perform these

125

g

R R

e

=

Another aplication is to overlay several screens alongside each . L
other. This allows you to create your display out of a conbination of 2
different screen nodes. '

n" indicates the nunber of the screen to be positioned, "x" and "y"
specify the location of the screen in hardware coordi nates.

The x coordinates of a screen can range fromO to 448 and are
automatically rounded down to the nearest 16-pixel boundary. Only the
posi tions between 112 and 448 actually visible on your TV though, and
you are strongly advised to avoid using an x coordinate below 112.

The y coordinates of your screen can range between 0 and 312., The
visible range will largely depend on your TV or nonitor, but you'll
propably find that coordi nates between 30 and 300 are satisfactory for
the majority of systens.,

At the time of witing, there app'ears to be a mnor bug in the
Am ga's HAM node. These pictures cannot be displayed with a Y
coordi nate of exactly 256. So set your coordinates to internediate
val ues such as 255 or 257 instead. W're not sure if it's a hardware or
software fault yet but it won't restrict you by any neans,

"w' holds the width of your screen in pixels. If this is different

fromthe original setting, only a part of your image will be shown,
starting fromthe top left corner of the display. Like the x
coordinates, the screen width will be rounded to the nearest 16 pixel
boundary. :

Simlarly, "h" sets the apparent height of the screen. Changing this
value will reduce the depth of your inage™

CGenerally SCREEN OPEN will automatically select the display position
for you using a standard setting in the AMOS configuration file. If a
screen is larger than the display then AMOS sets the screen into
over scan, ,

SCREEN DI SPLAY provides you with a sinple way of changing these
val ues from the default,, Any of the paranmeters x,y,h and w may be
omtted as appropriate. The unused values will be automatically
assigned to the default settings, and should be separated by comas,,

Screen Display 0,3.12,45.,, s Rem position the screen at 112, 45.

Wien you Are positioning your screens, try to ensure that the screen
starts at the left of the display and ends towards -the right. This is
essential if the Amga's hardware is to interpret your screen
correctly. In practice,, you may need to experinent a little to get the
precise effect you want. Fortunately,, the worst that can happen is that -
you'll get a silly looking display. The Amga won't crash if you make a - : %
mstake,, here are some guidelines to help you al ong;

* Only a single screen can be displayed on each horizontal 1ine. 126
However, you can safely place several screens on top of each other.
Al wll he well, providing only one of the screens visible.

There will always be a one pixel thick "dead zone" between each pair
of screens. This is generated by the copper list and is conpletely
unavoi dabl e. The dead zone will be noticeabl e whenever you nove a

«pri{o b«+.w.,,.,,, LRV <K= 5,<».>,,.. A Mo, <, XSmPlpm., -y novinj ‘the riinuae

pointer f romt heedi tor windowtothenenul:.ne, Yous houldseea
small black line through your nouse pointer at the border between

the two screens

SCREEN OFFSET (hardware scrolling)
SCREEN OFFSET n,x,y

The Amiga's display is not just limted to the visible dimensios of
your TV screen. There's absolutely nothing stopping you from generating
imgeswhicharenchlargerthant heactualscreen, 11'sobvi ously not
possible to display such pictures in their entirety,, but. you can easily
view a section of your image using the SCREEN OFFSET command

“n" is the number of the screen to be displayed,, x,y measure the
offset from the top left hand corner of the screen to the starting
point for your display, x and y are specified in units of a single
pi xel , so there's nothing stopping you from gene?rating some
delightfully smooth scrolls.

You can also use negative offsets with this instruction, allowing you
to display any part of the Am ga's memory on the screen. See
EXAUF' LE 10.2 for a full demonstration of this command

Screen control commands ' ' ' 1 : 127

SCREEN CLONE (clone a screen) |
SCREEN CLONE n T

The SCREEN CLONE command assigns a second version of the current screen
to screen number n. This clone uses exactly the same memory ares, as the
original screen.

Normal Iy, the cloned screen is displayed at the same place as its .
parent. However it can be manupul ated separately using any of the o
normal screen operations such as SCREEN DI SPLAY and SCREEN OFFSET.

Since there's only a “single* copy of the original screen data in
memory, Yyou can't access a clone with the SCREEN command. You'll, get an
"illegal screen parameter"” error if you rty. Another point to consider
is that any colour flash sequences you'ye set up on the original screen
wi |l NOT be copied during the cloning operation,, See EXAMPLE 10.3
Notice the use of the WAIT vBL command. This ensures that the clone is
re positioned off-screen and keeps the movements running smoothly,, :

I fyouexperimentwithSCREENCIL. OMg, you' 11quicklyfindthatthere's
a real limt to the amount of movement you can perform without spoiling
the effect completely. Even something as trivial as an extra
calculation to your movement routine can often introduce an
unacceptable delay into your animations

The screen display can also be adjusted directrly from the AWA -
ani mation language. This is capable of animating large numbers of
screenssmoothlyandeasi 1y,, SeeEXALLPLE.104forademonstration,.

DUAL PLAYFIELI) (combine two screens
: into dual piayfield)

DUAL PLAYFIELI) screen!, screen2

The Amiga's dual playfield node allows you to display two conplete

screens simultaneously at the same x and y coordinates. It's alnost as .
if you'd drawn eaxh screen on cell ophane and overlayed them on top of .
each ether. Each screen can be manipul ated totally independently,, You

can exploit this to produce a snooth parallax effect which is ideal for

screen scrolling games such as Silkwrm, -

i
H
t
:

The two components of a dual play-field Ars treated just like any
ot her AMOS screen and can be witten to in the normal way. They can
even be animated within AHAL or doubl e buffered.

"screenl" and "screen2" refer to screens which have been previously
defined with the SCREEN OPEN command. Only certain screen conbinations
& e acceptable. Both screens MJST use the sanme resolution, as it's
illegal to use hi res(neaning actually liedRes5 and lowes in the sanme
pl ayfiel d,

Here is a list of the possibilities : - R 128
Screen 1 Screen 2 Mot es - s

ttof colours ftof colours '

2 2
4 2
4 4
8 4 LowRes only
8 8 LowRes only

Al though the col our ranges Are predefined,, the sizes of the two screens
can be conpletely different. By creating a background screen which is
larger than the foreground you can create a delightfully realistic
paral l ax effect.

The colours of these screens & s all taken from the palette of
screen! with colour zero being treated as transparent.

Screen Col our indexes (from screen 1)

1 o - 7

-2 8 - 15 g ' ,
When you are drawing to the second screen., AMOS Basic will .
automaticallyconvertyourcolourindextotheappropriatenumber
before using it. So INK 2 will use colour nine from the first palette.

This conversion process does not apply to the assignment statements
such as COLOUR or PALETTE. It's important to remember this when you &e
changing the colour settings, otherwi se your new colours will not be
reflected on the actual screen,. Always make "screenl" the current
screen before changing your colour assignments,,

Ry

There ars a couple of important opints which you must be aware of
before setting up a dual playfield screens

% The screen offsets for both screens must never be set to zero,
t If you set a dual piayfield screen up and then want to position
it with SCREEN OFFSET be sure to specify dual screen 1 not the

amcond . . :

DUAL PLAYFIELI) is an extremely powerful instruction,, A full

"

cieiiiostration can be found in EXAMPLE 10., 5,

DUAL PRIORITY (choose order of dual playfiek! screens)

DUAL PRIORITY screenl, screen2

The first screen of a dual plavfield is normally displayed directrly
over the second. The DUAL PRICRITY command allows you to change this
order around so that screen? appears in front if screenl

WARNI NG This instruction only changes the order of the display. It
has $NO# effect on the screen organi zation. The first screen in the
dual playfield list should therefore still be used for all colour
assignnents and wi th SCREEN D SPLAY.,

SCREEN (set current screen) -_ N '

SCREEN n . o - L.

The SCREEN command allows you to direct all graphical and text
operations to screen nunber n, '

=SCREEM (get the current screentt)
S=SCREEN

Returns the nunber of the currenlly active screen.

SCREEN TO, FRONT (noves screen to front of display)
SCREEN TO FRONT [s] ' : -

This instruction noves screen "s" to the front of the TV display,, If
the paraneter is omtted,, then the current screen wll be used instead,,

Note: if the AUTO VI EW system has been turned off,, you' Il need to call
the VI EW command before the effect will be visible on the screen,.

SCREEN TO BACK (nove screen to back of display)
SCREEN TO BACK Lnl S Y

SCREEN TO BACK noves a screen to the background of your display. If
there is another screen at the sanme coordinate this will now be
displayed in front of the selected screen,,

SCREEN HI DE (tenporarily 'hi de a screen)

SCREEN HI DE Lnl

Renoves a selected screen fromview copletely,, This screen can be

129

iz

¢ bR~

redisplayed using a call to SCREEN SHOWN If n is omtted., this
instruction will hide the current screen.

SCREEN SHOW (restore a screen) 130

SCREEN SHOW [n]

Screen SHOW returns a screen onto the display after it has been hidden
with the SCREEN H DE conmand.

=SCREEN HEI GHT (return height of screen)
h=SCREEN HEl GHT [n] S - Loe e

Returns the height of an AMOS screen,, If you don't include the _ _ C
paraneter n, the height will be returned for the current screen,, o ‘

=SCREEN WDTH (return the width of screen)
W=SCREEM W DTH En] I

SCREEN WDTH retrieves the width of either the current screen or screen
nurmber n. Exanpl es

Print Screen Wdth

=SCREEN COLOUR (return the number of colours)

c=SCREEN COLOUR v '

Returns the maximum numbers of colours in the currently active screen.

=SCIN (returns screen number at a selected position)
g=30TM(x, ¥}
Returns the nunber of screen Which is underneath the ' hardwares-

coordinates x,y. If this screen does not exist, then s wll be |oaded
wi t hanegativevalue(null).

SCIN is normally used in conduction with the X MOUSE and Y MOUSE
functions to check whether the mouse cursor has entered a particular
screen- Exanples : '

Print Scin(X Mouse. Y Mouse)

screen colours ' o . _ 13

DEFAULT PALETTE (load screen with standard palette)
DEFAULT PALETTE cl, c2, ¢:3,, .. ¢6, ,,-> up to 32 colours

A TP g b R

T

This command sinplifies the process of opening nmany screens with the
sane palette,, It defines a list of colours which will be used for all
subsequent screens which you create with the SCREEN OPEN instruction.
As usual,, the allowabl e col our values range from $000 to $FFF.

GET PALETTE (set the palette from a screen)
CGET PALETTE n [, mask] -

The GET PALETTE instruction copies the colours from screen n and | oads
theminto the current screen,, This c& i be very useful when you're
moving information from one screen to another with SCREEN COPY, as it's
usually vital that both the source and destination screens share the
sane col our settings.

The optional "mask" paraneter allows you to load just a selection of
the colours,, See CGET SPRITE PALETTE for full details of mask.

Aeari g the screen

CLS(clearthes< reen)

CLS erases all or part of the current scfeen,. There AVB three possible

formats of this command:
CLS

Clear st hecurrer\tscreenbyfi 11i nq:. IW|thcolourzeroandclearsany
wi ndows which my have been set up.

cLScol
Fills your screen with colour col.

CLS col, xl :i. to x2,y2
Replaces the rectangular region at coordinates xl ,yl,, x2,,y2 with a block
of colour col,, Col can take any value from O to the nmax,, number of
avail able colours. xl.,vy1l, x2,y2 hold the coordinates for top left and
bottom right corners of the &e& to be cleared by this command.
Exampl e: T o

Cls s Circle 100,09,09 s Cls 1,50,50 To 150, 150

i pu Ia |ng the contents of a screen

SCREEN COPY (copy sections of the screen)
SCREEN COPY scrl TO scir2 : -
SCREEN COPY scrl,, xl,yl, x2sy2 TO scr2,x3,y3 [..node]

SCREEN COPY snakes, it possible to copy large sections of a screen from
one place to another at amazing speed-

12

R

- i

"scrl" holds the screen used as the source of your image- This can be
either a standard screen number or the number of a logical or physica
screen generated using the LOGI C and PHYSIC commands

"scr2" selects an optional destination screen into which this data
will be copied. If it's omtted,, the Area will be copied into the
current screen,. '

xi,yl and x2.,y2 hold the dimension of a rectangular source area, and
x3,y3 contain the coordinates of the destination,, There Are no
limtions to these coordinates whatsoever. Any parts of your image
which lie outside the current screen ares, will be automatically clipped
as appropriate.

The optional "mode" parameter chooses which of the 255 possible
blitter modes will be used for your copying operation. These modes
determ ne how your source and destination areas will be combined
together on the screen,, The mode is set using a bit-pattern in the
followingformat:

node Bit Source Hit Destination st
A 0 0
5 -0 i
6 e i 0
7 N 1

Note that the bottom four bits in the pattern e,re not used by this
instruction and should always be set to zero.

Each bit in "nmobde" represents a single conbination of bits in the
source and destination areas. If a node bit is set to one, then the
associated bit on the screen will also be loaded with a one, otherw se
the result will be zero,, ' -

In order to select the correct drawing node for you application, you
sinply decide which conbinations should result in a one and set the
appropriate bits in the "node" paraneter accordingly,,

Supposing you only wanted to set a bit on the screen if both the
source and destination bits were the same. You would |ook the table for
the points where your requirement was satisfied. This would produce the 133
foll owing vaue for "node": : :

210010000 I

[f you're not famliar with binary notation, you may find this command
a little opaque. Rather than boring you silly with an explanation of
binay we'll now provide you with a detailed list of the more common
requirements along with the associated bit-maps.

Mode Ef fect o : - Bit-pattern
REPLACE Replaces the destination with a direct 2:1.1000000
co| jyofthesourcei mage(defaull),,

I NVERT Replaces the destination image by a 200110000
reversed copy of the source image.

AND Combi nes the source and destination 210000000
with a logical AND operation.,

OR OR's the source with the destination 211100000

XOR Combi nes the source and destination 201100000

Are A with an Exclusive OR

!

2 AT e R,

Lo U0 e

Technical ly-m nded users should note that SCREEN COPY combines the
source and destination using blitter areas B and C and that blitter
area A is not used by the system at all.

Scrolling the screen

DEF SCROLL (define'a scroll zone)
DEF SCROLL n,xl,yl to x2,y2.,dx,dy

Al lows you to define up to 16 different scrolling zones. Each of these
zones can be associated with a specific scrolling operation which is
determned by the variables dx and dy,

nlioldsthenumberofthezoneandcanrangefromlto.l6,x1,y1l
refer to the coordinates of the top left-hand corner of the a.re& to be
scro.lledandx2,y2tothepointdiagonallyopposits.

dx signifies the number of pixels the zone will be shifted to the
right in each operation. Negative numbers indicate that, the scrolling
will be fromright to left, and positive numbers from left to right.

Simlarly, dyholdsthenumberofpi xelstheionew: 1lbeadvancedup
or down during the scroll. In this case negative values of dy are used
to indicate an upward movement and positive values a downward notion.,

SCROLL (scroll the screen) o ‘ B 134
SCROLL n |

The SCROLL command scrolls the screen using the settings you have
specified with the DEF SCROLL instruction, n refers to the number of
the zone you wish to scroll. o E

Load Iff "AMOS. DATA:IFF/TFrog. Leap.|FF",2

Def Scroll 1,0,0, to 320,200,1,0 L

Do . _ S
Scroll 1 o ... L. o e e e

Loop

Larger exanples can be found in EXAMPLE 10.7 and EXAMPLE 10.8,, The
variable s holds the nunber of points the picture will be noved during
each SCROLL. Mdte the use of screen switching to inprove the quality of
t he notion,,

Screen switching ey

In order to produce the snooth novenent effects found in a computer
game, it's necessery to conplete all the drawing operations within a
time span of no nmore than a 15th of a second. This represents a rea

chal l enge for the fastest conputer,, and it's often inpossible to
achieve erven on the Am ga. If ‘the animation is conmplex, your graphics
will therefore tend to flicker annoyingly as they are being drawn.

2 13 Fma,

Fortunately,, there's a solution at hand which has been succesfully
exploited in the vast majority of modern arcade games. This “screen
switching* technique can easily generate flicker-free screen animation
using just a fraction of Amga's computing power,.

Thefaasicideaisextremelysiinple,lnsteadofconstructingyour
i mges on the actual screen, you perform all your drawing operations on
a separate logical screen, which is copletely invisible to the user,,
This is distinct from the tphysical screen* which is currently being
displayed on your TV. On ce t he g r aphi cs have been conplated ,, you can
then swap the logical and physical screen to produce a smooth
transition between the two screen images, The old physical screen now
becomes the new logical screen, and is used to construct the next
picture in your sequence.

At fist glance, this process |ooks pretty complicated, but it's all
performed automatically by the AMOS Basic: DOUBLE: SUFFER 'command, This
+forces all drawing operations to be performed directly on the [ogical
screen without affecting the current display. All you need to do within
your program is to synchronise your drawing operations with the screen
switches. This can be achieved with the help of SCREEN SWAP
instruction. _ _

SCREEN SWAP (swap the logical and physical screens)

SCREEN SWAP [n]

SCREEN SWAP swaps the physical and |ogical screens,, This enables you to
i nst ananeously switch the physical display between the two screens,, 135

If you're using DOUBLE BUFFER, these screens wll have been created
for you already. However, you will need to switch off the automatic
screen swtching system with BOB UPDATE CH, as otherw se the screens
will be swapped 50 times a second., and will interfere with your own
drawi ng operations. It's also necessary to kill the autoback feature
with AUTOBACK OFF. This nornally copies your graphical operatains onto
both physical and l|ogical screens. It's useful when you wish to conbine
sinmpl e graphics with noving bobs,, but it destroys the effect of your
screen switching operations totally.

As an illustration of the power of this comand,, have a |ook at the
prograns EXAMPLE 10.9 and EXAMPLE 10. 10.

=-LO&BASE (return the address of part of
part of the |ogical screen)

addr ess=LQGBASE(pl ane)

The LO6BASE function is aimed at expert programers who wish to access

the Amga's screen nmenory directly,, "plane" referes one of the six
possi bl e bit-planes which nake up the current screen. After LOGBASE has
been called, "address" wll contain either the address of the required

bit-plane, or zero if it doesn't exist.

o wf

t hecurr ent screen)

R it kil S el

addr ess=PHYBASF:

PHYBASE returns the address in nenory of bit-plane nunber "plane" for
the current screen. If this plane does not exist, then a value of zero
will be returned by this function,. Exanpl e:

Loke F hybase(Q ,0 s Rem pokes a thin line directly onto the
screen,

=PHYSI C (return identifier of
the physical screen)

=PHYSI C | o -

=PHYSI C(s) . . - . . .

The PHYSIC function returns an identification number for the current
physical screen. Thi snumberallowsyoutod:i recllyaccessthephysi cal
|mage which is being displayed by the double buffering system

The result of this function can be substituted for the screen number
in the ZOOM APPEAR and SCREEN COPY commands.

"s" is the number of an AMOS screen. If it"s onmtted,, then the
present screen will be used instead. Don WOT confuse with the LOGBASE
function.

" ' =L0GI C (return identifier of ' 136
' the logical screen) ’

=L0G C

=L0GI C(s)

Returns an identification number of a logical screen., This can be used
in conjunction with the SCREENl COPY, APPEAR and ZOOM commands to change
your image off-screen, without affecting the current display. : :

Screen synchroni sation

Li ke nmost hone conputers the AM GA uses a nenory-nmapped display,, This
is a technical termfor a concept you Are alnost certainly already
famliar with,, Put sinply, a nenory-napped display is one which uses
special hardware to convert en inage stored in nmenory into a signal
which can be displayed to your TV screen,, Wenever AMOS Basic accesses
the scren it does so through the nmedium of this screen nenory.,

The screen display is updated by the hardware every 50th of a second.
Once a screen has been drawn, the electron beam turns off and returns
to the top left of the screen,. This process is called the vertical
bl ank period VBL. At the sanme tinme, AMOS Basic performs a nunber of
inportant tasks, such as noving the sprites and sw tching the physical
screen address if it has changed. The actions of instructions such as
ANM or SCREEN SWAP will therefore only be fully conpleted when the
screen is redrawn,.

Since a 50th of a second is a quite long time for AMOS Easic., this
can lead to a serious lack of coordination between your program and the

screen, which is especially notice-able in tight program | oops. The best
way of avoidino this is dif-ficuHf, A« +< wns-t until ths screen has

been updated before you. execute the next Basic, command.

e T e

T

WAIT VBL (wait for a vertical blank)

The WAIT WBL instruction halts the AMGA until ne next vertical talanl«

period. It is commonly used after either a PUT BOB insturction or a
SCREEN SWAP

APPEAR (fade between two pictures)

APPEAR source TO desti nati"on,' effect [, pixels! .-
The APPEAR command enables you to produce fancy fades between the

"source" and "destination" screens. Source and destination are sinply
thenumbersof screensyou' vepreviouslyopenedusi ngSCREE NOPEN. You

can also substitute the LOG C and PHYSIC functions in these positions
if required. : : '

"effect” determines the type of fade which will be produced by this
insturction,, The size of this parameter can vary fromi to the number
of pixels in you current screen,, _

"pixels" specifies the number of points which &e to affected. :
Normally this value is set to the TOTAL screen area, but you can reduce
it to fade only a part of the screen. Al screens are drawn in strict
order from the top of the screen to the bottom.

The appearance of your fades will naturally vary depending on the
screen node you Are using,, A program is provided in EXAWMPLE .1011 to
allow you to experiment with the various possibilities.

FADE (blend one or nore colours ' _ . 13?
- to new colour values)

FADE speed [,colour list] g o
FADE speed TO screen [,,mask] ¢ @ '

The FADE command allows you to smoothly change the entire palette from
one set of colours to another. This can be used to generate
prof essional -1 ooking fade effects for your |oading screens.

The standard version of the instruction takes the current palette,,
and slowy dissolves the screen colours to zero. Each colour value is
successively reduced by one until they reach zero,, Exanple;

Fade 15 s Wait 225 .-

"speed" is the nunber of vertical blank periods that must occur
before the next colour change is perforned,,

Since the fadig effects are executed using interrupts;, it's best to
wait until the operation has conpletely finished before proceeding to

the nexy Basic instruction. The time taken for the fade WAIT can be
calculat edbyt hsf or mul a:

wait value = fade speed * 15

B

.

Fade c. Afi be extended to generate a new palette directly froma |ist of
colour valumwg.

Fade 15, $100, $200, $200, $300

Any nunber of colours can be specified in this instruction,, up to the
naxinhtiH allowed in the current graphics nmode., Like nbst AMOS commands,
it's possible to omt selected paraneters conpletely,, These colours
will be totally unaffected fy the FADE command.

Fade 15,, ,,*100, $800, $F00

The nost powerful form of FADE snoothly transforms the colours from the
current screen into a palette taken from an existing screen.

Fade speed TO s C, nask]

The present colours are slowy converted into the palette of screen s.
It's also possible to load the palette from the sprite bank using the
same technique. Sinply use a negative value for the screen nunber s.

"mask" is a bit-pattern which specifies which colours should be
| oaded. Each colour is associated with a single bit in this pattern
nunbered fromO to 15, If a bit is set to 1, then the rel evant col our-
will be changed. See EXAMPLE 10.3.2.) -

FLASH (set flashing colour sequence)

This command gives you the ability to periodically change the col our
assigned to any colour index., It does this with an interrupt sinilar to
that used by the sprite and the music instructions. The format of the
flash instruction is; : - - ' -

FLASHi ndex , "(col our, del ay) (col our ..del ay) (col our, delay),,,."

"index" is the nunber of the colour which is to be animated. Delay is
set in units of a 50th of a second.

Colour is stored in the standard R&B format (See COLOUR) for node
details. The action of FLASH is to take each new colour from the Iist
in turn, and then load it into the index for a length of tine
specified by the delay. Wen the end of this list is reached, the
entire sequence of colours is repeated fromthe start., Note that you
are only allows to use a max. of 16 colour changes in any one FLASH
instruction,, Here is a small exanples : :

Flash I.," (007, 10) (000, 10)"

This alternates colour nunber 1 between blue and black every 10/50th of
a second »

FLASH OFF

Turns off the flashing. Note that on start-up, colour nunber 3 is
automatically assigned a flash sequence for use by the cursor,, It's a
good idea to turn this off before loading any pictures from the disc.

SHFTUP(colour rot at i on)

138

= L T e e A Y TARE D

1

SH FT UP del ay,,first, last,flag

The SH FT UP command rotates the values held in the colour registers
"from the "first" to "last". The "first" colour in the list is copied
into the second,, and the second into the third,, and so on, until the
"last" colour in the series is reached,,

Each AMOS screen can have its own unique set of colour aninmations.
Col our shifts can be used to create amazing hyperspace sequences
simlar to those found in Captain Blood and Elite. Since these
animations are perforned using interrupts, they can be executed while
your program is running, wthout affecting it in the slightest.

"delay" is the time interval between each stage of the rotation,
nmeasured in SGhs of a second.

"flag" controls the type of rotation,, If it's ste to one,, the |ast
colour index in the list will be copied into the first, and the first e
to the last. So the colours will rotate continuously on the screen.
When "flag" is set to zero, the contents of the first and |ast indexes
will be discarded, and the region between first and last wll be
repl aced by a copy of the first colour in the list,, For exanples

SH FT UP 100, 1, 15,1

SH FT UP .10, 1,15,0 - B

SH FT DOM (col our rotation)

This is simlar to the SH FT UP,, except it rotates the colours in the
opposite direction.

SH FT OFF (stops col,, rotation for the current screen)

SHIFT OFF ') A

Imedi ately terminates all colour rotations produced by the SH FT UP or
SH FT DOMWN instructions

SET RAI NBOW (define a rainbow effect)

Defines an attractive rainbow affect which can be subsequently
di spl ayed using the RAINBOWN command. It works by changing the shade of
a colour according to a series of sinple rules.

n
"colour" is a colour index which will be changed by the instruction,.
This colour can be assigned a different value for each horizonal sreen
line (or scan line). Mte that only colours 0-15 can be nani pul at ed
using this system .

"length'! sets the size of table to store your colours. There's one
entry in this table for each colour value on the screen. The size of
this table can range from 16 to 54400,, If "length" is less than the

~physicalHcsigh-tofyo*trr-«innbTtw«>hc?nlhe?ciolOurp4ttt€®1"OWX1XUt?

repeated several times on the screen.

is the nunber of your rainbow, Possible values range fromO to 3.

139 o

iatic . il

v

b <

i ST e T

The r$,, 9% b$ conmand strings, progressibely change the intensities of 140

the red., green and blue conmponents of your final colour,, These val ues
are loaded into a special colour table., Each colour in the table
determnes the appearance of a single horizontal scan line on the
screen. S

At the start of the rainbow, all the comportents in your colour 3. re
initially loaded with a value of zero. This will be changed according
to the information held in the colour table. - o

Any command string nay be onmitted if required,, but you'll still have
to include the quotes and the commas in their expected positions.

Each string can contain a whole list of commands. These wll be
cycled continually to produce the final rainbow pattern,, The format is:

(- n..step,count)

"n" sets the nunber of lintes to be assigned to a' specific colour value
in the rainbow. Increasing this number will change the height of each
i ndi vi dual rainbow line.,

"step" holds a nunmber to be added to the conponent. This number will
be used to generate the colour of the succeeding line on the screen,, A
positive step will increase the intensity of colour conponent,, and a
negative value will reduce it.

VWhenever a particul ar conmponent exceeds the maxinum of 15, a new -
valuew 1llbecalculatedf romt heformula: '

new conponent = old conponent Md 15

"count" is the number of times the current operation is to be repeated.
The best way to denonstrate this command is with an exanples

Set Ral nbOW 011 '.16411." (312,8)”11""1'"' : . L]
Rai nbow 0,, 56,1,,255 ..'/,"
Wait Key

This creates a new rainbow with nunber zero using colour index one. As
you can see, SET RAINBOW only defines your rainbow. In order to display
it on the screen you need to make use of the RAI NBOW command.

The rainbow effects first |oads your colour with a value of zero.,
Everyfourscan-lines,theredcomponentwi 11beautomatically
incremented by two. So the contents of colour zero will progressively
change from $000 to $EQ0« WHen the conponent exceeds the maximum of .15
its remainder will be calculated, and the colour will be returned to
its starting point (zero). The pattern will now be repeated down the
screen, : : :

By defining a separate pattern for eaxh of the red,.green and blue
components of your colour, you can easily generate some starling
patterns on the screen. Since each rainbow only uses a single colour
index, there's nothing stopping you from creating the same effects
using just two colour screens. These Are ideal from the backgrounds of
an arcade game, as they consume very little memory. Example:

. Screen Open 0, 320, 256, 2, Lowres T :
Set Rainbow 0,1,128, "8,1,8)", "(8,1,8)".,"" o .

Rai nbow 0. 1, 30, 128

Colour 1,0 ; Curs Of : Cs 1 : Flash Of
Locate 0,2 s Centre "Anps Basic" : Wit Key

T

w

For further denonstration of the superb effects that can be achieved
with this instruction load up EXAMPLE 10.13,,

Rai nbows can also be animated using a powerful interrupt system See
the section on AHAL for nore details.

RAI NBOW (create a rainbow effect)
RAI NBOW n, base, >\, h

Di spl ays rai nbow number n on the screen,, If AUTOVIEWis set to G, the
rai nbow will only Appear when you next call the VIEW command.. o

"base" is an offset in the first colour in the table you created with
SET RAINBOW Changing this value will cycle the rainbow on the screen.

y holds the vertical position of the rainbow in hardware coordinates.
The minimm calue for this coordinate is 40,, If you attenpt to use a
coordinate below this point, the rainbow will be displayed from line 30
onwar ds, ,

h sets the height of yo'ur rai nbow scan |ines.

Rai nbows s.re totally conpatible with the AMOS system including bobs - |

and sprits. However, don't attenpt to rainbow a colour which is
currently being changed using the FLASH or SH FT instructions, as this
will lead to unpredictable screen effects.

Note that only a single rainbow effect can be displayed on a
particular scan line, even if they use different colours on the screen.

Normal |y the rainbow with the highest screen position wll be
displayed first. But if several rainbows start from the same scan line,,
then the rainbow with the lowest identification nunber will be drawn in
front of the others..

=RAIN (change the col our of an Lo
i ndi vi dual rainbow |ine) -,
RAIN(n, l'ine)™c L
c=RAIN(n, i ne)

This is the nmost powerful of all the rainbow creation commands, as it
allows to change the colour of an individual rainbow [ine to any value
you like. ¥le o, 0 -0 A :

n is the number of the rainbow you wish to access, "line" is the
i ndividual scan line to be changed,, Exanples

Curs Of s Centre "Securitate Stinks!" n
Set Rainbow 1,1,409? """, "","" : :
For YO To 4095 :
Rain(.1;,V)=Y ' . _ ' '
Next Y . ’
For 0=0 to 4095--255
Rai nbow 1, 0/ 40, 255.
hiex* C

Vait Key L

143

T Wiy e AT TRt

- W

ZO0M (magnify & section of the screen)
ZOMsource,, xl ,ylsx2,y2 TOclest, x3,y3, x4, y4

ZOM is a sinmple instruction which allows you to change the size of any
rectangul ar region of the screen..

"source" is the nunber of a screen from which your picture will be
taken. You can also use the LOG C function to grab your image from the
appropriate |logical screen. The rectangular a.reA to be affected by this
instruction is entered using the coordinates xl,yi,x2,y2. "dest" holds
the destination screen for your image.. Like the source, it can he
either a screen nunmber, or a logical screen specified using LOG C,

The dimensios of this screen are taken from the cordinat.es x3,y3 and
x4,,y4,, These hold the dinensios of the rectangle into which the screen
segnment wll be conpressed.

The effect of this instruction depends on the relative sizes of the
source and destination rectanges.. The source image is automatically
resized to fit exactly into the destination rectangle. So the sane
instruction can be used to reduce or enlarge your inages as required.

See EXAMPLE 10.14 for a further denpnstration.

Changi ng the copper |Iist

Ths Ami ga's co-processor (copper) provides total control over the
appear ance of every line on your screen. This copper is a separate
processor with its own internal nenmory and uni que set of instructions.
By programming the copper it's possible to freely generate a massive
variety of different screen effects. Nornally the copper is nanaged
automatically by the AMOS system Each of the avail able copper effects
can be performed directly fromwithin AMOS Bastc without the need to
indulge in conplicated nmachi ne-l1evel programmng. In practive these
intructions will be nore*than sufficient for the vast nmajority of

appl i cations. . ..

Qoviously, no one can think of everything though. Expert programers
may wish to access the copper directly to create their own speci al
screen nodes, , :

Be warned! The copper list is notoriously difficult to prograiii, and
if you don't know precisely what you are doing, you'll alnost certainly
crash your Amiga. Before enbarking on your copper experiments for the
first time, you are therefore adviced to read one of the many reference
books on the subject. A good explanation can be found the "Aniga System
Programers Quite" from Abacus.

COPPER OFF (turn of the standard copper Iist.)

COPPER OFF

Freezes the current AMOS copper list and turns off the screen display

copletely. You can now create your own display using a series of CCP
MOUE A~ dcaPuAi Ti.-, Me k .. <t A,,.». . , -

As a default, all user-defined copper lists &e limted to a nmaximum

142

143

e T T——,

[

of 12k. On average,, each copper instruction takes up two bytes. So
there's a space for around 6000 instructions,, This nay be increased if
requi red, using a special option fromthe CONFIG utility.

Note that all copper instructions Are witten to a separate | ogical
list which is not displayed on the screen. This stops your program
corrupting the display while the copper list is being created.. To
activate your new screen, you'll need to swap the physical and |ogical
lists around with the COP SWAP command.

It's also inmportant to generate your copper lists in strict order,,
starting from the top left of your screen and progressing downward to
the bottomright. See EXAMPLE 10. 15,

COPPER ON (restart the copper 1ist)
COPPER ON

Restarts the A'iGs copper list calculations and displays the current
AMOS screens.

COP HOVE (wite a MOE instruction into
the logical copper Iist)

CCOP MOVE addr, val ue
Generates a MOVE instruction in the |ogical copper |ist.

"addr" is an address of a 16 bit register to be changed. This nust
l[ie within the normal copper DATA ZONE ($7F-*1BE). "value" is a
word-sized integer to be loaded into the requested register.

COP HOVEL (wite a long MOVE instructio
into copper list) S

COP HOVEL addr, val ue

This is identical to the COP MO/JE,, except that "addr" now refers to a
32-bit copper register, "value" contains a long word intereger.

COP WAIT (copper WAIT instruction)
COP WAIT x,y [,x mask, y nask]

COP WAIT wites a WAIT instruction into your copper list. The copper
waits until the hardware coordinates x,y have been reached and returns
control to the main processor. Note that line 255 is automatically
managed by AMOS. So you don't have to worry about it at all.

x mask and y nmask are bit maps which allow you to wait until just a
certain conbination of bits in the screen coordinates have been set. As
a default both masks are automatically assignet to tiFF.

B T

B

[

COP RESET (reset copper list pointers)
COP RESET

Restores the address used by the next copper' instruction to the start
of the copper I|ist.

=COP LOGI C (address of copper list)
addr 0GP LOGI C |

This function returns the absolute address in menory of the Iogical
copper list. This allows you to poke your COPPER instructions directly
into the buffer, possibly using assenbly [anguage,,

Hints and tips

Before creating a screen with a user defined copper list,, you'll
first need to allocate some menory for the appropriate bit-maps.

Al though you can use RESERVE for this purpose, it's nuch easier to

define a dummy screen with the SCREEN OPEN command instead,, The copper

registers can be loaded with the addresses of the required bit--naps

using the LOGBASE function.

You'll now be able to access your screen using all the standard AMOS
drawing features., In order to reserve the correct amount of memory, set
the nunber of colours to the MAXIMUM used in the new screen,, This may
be a little wasteful, but sinplifies things enornously, e

* It's perfectly acceptable to conbine user-defined screens with AMOS

bobs. If you're using double buffering though, you'll have to define
a separate copper list for both the logical and physical screens. This
may be achieved using the following procedure?

Define your copper list for the first screen

Swap the logical and physical copper lists with COP SWAP
Swap the physical and logical screens with SCREEN SWAP
Define your copper list for the second screen

B~ owpn e

This will ensure that your bobs wll updated correctly' on your new
screens. All thenormalAll0 Scommandscanbeusedi ncludi naAMAL.

144

- 6 g ATy W R

i3, e £

PP

mpe T

11; HARDWARE SPRUES 145
(ne of the biggest attractions of the Commdore Amiga is its ability to
produce high quality games which rivial those found on genuine arcade
machines. This can be anply denonstrated by terrific programs such as

Ballle Squad ron and ELi mi nator ,

Now, for the first tine., all these amazing features <nre at your
fingertips! AMOSBasicprovi desyouwi t hconplet econt rolovert he
Am ga's hardware and software sprites,, These sprites can be
effortlessly manoeuvred with the built-in AMAL animation |anguage,, SO
you don't have to be a machine code wizard in order to create your own
stunning arcade ganes,,

Hardware sprites are searate images which can be automatically
overlayed on the Amiga's screen,. The classic: example of a hardware
sprite is the nouse pointer,, This is conpletely independent of the .
screen, and works equally well in ail the Amga' s graphics nodes. _ - -

Since sprites don't interfere with the screen background, they are
perfect for the moving objects required by an arcade game. Not only are
they blindingly fast, but they also take up very little menmory,, So when
you're witing an arcade game, hardware sprites should always be at the
top of your list* _ - _

Each sprite is 16 pixews wise and up to 255 pixels high,, The Amga's
hardware supports a maximum of eight three-colour sprites or four
fifteen-colour sprites. Colour number zero is transparent - that's the
reason for the odd colour ranges,,

At first glance, these features don't seem particulary inpressive,,
But there are a couple of useful tricks which can increase both the
nunbers and sizes of these sprites beyond recognition,,

One solution is to take each hardware sprite and split it into a
nunber of horizontal segments. These segments can be independently
positioned,, allowing you to apparently display dozens of sprites on the
screen at once. Simlarly, the width restriction can be exceeded by
building an object out of several individual sprites. Using this
technique it's easy to generate objects up to 128 pixels wide.

Until recently the only way to exploit these techniques was to delve
i nt othenysteriouswolrdof 68000assenbler language. Soyou' 1lbe
delighted to discover that AMOS Basic manages the entire process
automatically! Once you've designed your sprites with the AMOS sprite -«
editor, you can effortlessly manipulate them with just a single Basic:
instruction.

The sprite commands

Renenber to .have a sprite bank |oaded into menory when trying out the
various commands in this chapter,, Ue advise you use the file ’
SPRITES.AM from the A10S data disc. _ " -

SPRITE (display a hardware sprits on the screen)

SPRITE" r, , X, , i

The SPRITE command di spl ayé a hardware sprite on the screen at

coordi nates x,y using inage nunber i ,

n is the identification nunmber of the sprite and can range fromO to
63. Each sprite can be associated with a separate inmage from the sprite
bank, so the same inmmge can be used for several sprites. '

x and y hold the position of the sprite using special hardware
coordinates. Al neasurenents are taken from the *hot spot* of your
images., This serves as a sort of 'handle' on the sprite and is used as
a reference point for the coordinates. Normally the hot spot is set to
the top left hand corner of an inmage., However it can be changed within
your program using the HOT SPOT conmand. :

Har dwar e coordinates are independent of the screen node and
effectively start from (eeee129,-45 on the default screen. AMIS provides
you with several built-in functions for conversions between hardware
coordinates and the easier to use screen coordinates. See the X HARD,
Y HARD, X SCREEN and Y SCREEN functions for nore details. :

i is the nunber of a particular image stored in the sprite bank. This
bank can be created using the AMCS sprite editor., and is automatically
saved along with your Basic program, It can also be |loaded directly
with the LOAD instruction. In addition you can use the GET SPRI TE
command to grab an inage straight off the current screen.

Any of these paraneters x,y and i may be optionally omtted, but the
appropriate comras nust be included. For exanple: '

Load "AilOSJJATANSprites/Octopus.abk™
Sprite 8,200, 100,1 '

Sprite 8,,.150,1 .

Sprite 8, 300,, '

For a denonstration of sprites in action, |load EXAMPLE 11.1 from the
MANUAL fol der on the AMOS data disc. '

Conmputed sprites

Al'though the Amiga only provides you with eight actual sprites, it's
possible to use themto display up to 64 different objects on the
screen at once. These objects are known as -conputed sprites-- and are
managed antirely by AMOS Basic. Conputed sprites can be assigned by
calling the SPRITE conmmand with a nunber greater than 7, For exanple,

Load "AMDXS...DATAsSprites/ Cct opus. , abk"

Sprite 8,2003100,,1
The size of a conputed sprite is taken directly from the inmage data,
and can vs.ry between 16 and 128 pixels wde,, and from1l to 255 pixels
hi gh.

Before you can nake full use of these sprites you need to understand
soma of the principles behind them Each hardware sprite consists of a
thin narrow strip 16 pixels wide and 256 pixels deep. Depending on the
nunber of colours, you can have either eight or four of these strips on
the screen at a tine,,

It should be obvious that nost of the area inside these sprites is

effectively wasted. That's because few prograns need sprites which are
i-iller +. hin about 4 0 or 64 pixels. However there is a sinple trick

whi ch enables us to borrow this space to generate dozens of extra
objects on the screen,, Look at the picture AMS1. PIC (included in this

146

147

oy

manual file packet) which contains the letters A"UO and S.

< picture AMOSi.PIC >

This sprite can be split into four horizontal segments each enclosing a
single letter. The Amiga's hardware allows each section to be freely-
positioned anywhere on the current line, making a total of four

computed sprites* Here's a diagram which illustrates this process.

< picture AMOS2.PIC > B ' e

As you can see, a computed sprite is really just a small part of a
hardware sprite displayed at a different horizontal screen position.
Notice the line between each object,. This is an unavoidable side effect
of the repositioning process, and is generated by the Am ga's hardware

Due to the way computed sprites are produced, there are a couple of
restrictions to their use. Firstly, you can't have more than 8 conmputed
sprites on a single line.. In practice the system is complicated by the
needtoproducespriteswhicharelargerthanthel6pi xelmaxi mum
AMOS generates these objects by automatically positioning several o
computed sprites side by side., This can be seen from the diagram bel ow

< picture ANOSB- Pl C > . :

The maxi mum of eight hardware sprites therefore imposes a strict limt
to the number of such objects you can display on a horizontal line,, The
total width of the objects must not exceed::

16*8=128 pixels for three-colour sprites | L 149
16*4=64 pixels for fifteen-colour sprites T - -

If you attempt to ignore limtation, you won't get an error message,

but your computer sprite will not be displayed on the screen,, So it's
vital to ensure that the above restriction is never broken. This can be
achieved using the following procedures

Add together the widths of all your computed sprites., multiplying the
di mensios of any fifteen-colour sprites by twn., If the total is
greater than 128, you'll need to space your sprites on the screen so
thattheirc.ombinedwi dthliesbelowthisvalue, Takeparticularc:arec<
if you &e animating your sprites with AIt A, as certain combinations
will only come to light after you've experimented with the sequence for
some time. These problems will be manifested by the random
di sappearance of one or more sprites on the screen..

[f the worst comes to the worst., you'll need to substitute some of
your larger sprites with Slitter Objects,, This will increase the
overall size of your program significantly, but it should have a
negligible effect on the final quality of your game.

These restrictions are not confined to AMOS Basic of course, They
apply equally well to all games on the Amiga,, even if they're written
entirely in machine code: So there's nothing stopping you from
producing your own Xenon |l clone using exactly the same tehcniques.

Note that, normally,, hardware sprite number zero is allocated to the
mouse cursor. You can release this sprite with a simple call to the
HI DE command. See EXAMPLE 11.2.

Creating an individual hardware sprite

The only real problem with conputed sprites is that you never know
preci sely which hardware sprite is going to be used in a particular
object. Normally the hardware sprites used in an object wll change
whenever the object is noved. Occasionally this can be inconvenient,
especially when you are animating objects such as missiles which need
to remain visible in a wide range of possible sprits conbinations.

In these circunstances it's useful to be able to allocate a hardware
sprite directly. Individual hardware sprites can be assigned using the
SPRITE instruction with an identification nunber between 0 and 7.
Exanpl es o . : - *

Sprite 1,100.,100,2 | L .

This loads a hardware sprite number 1 with inage nunber 2. N now

corresponds to the number of a single hardware sprite, and can range

between 0 and 7. If your image is larger than sixteen pixels w de, AMIS

will automatically grab the required sprites in consecutive order X
starting from the sprite you have chosen,, For exanples Ly

Sprite 2,200, 100,1
Supposing image nunber 1 contained a 32-bit image with three colours. '
This comand woul d all ocate hardware spries 2 and 3 to the inmage.
Not hing would happen if you were now to attenpt to display hardware
sprite 3 with a command like SPRITE 3,150,100,1 because this sprite
has al ready been used. You would on 1 y have access to sprites 0,1,4,5,6
and 7, and the maxi mum nunbers and sites of your conputed sprites would
bereducedaccor di ngly.

Each 15-colour sprite is inplemented using a pair of two three-colour 150

sprites. However,, it's not possible to combinea ny two sprites in this

way. Only the conbinations 0/1,2/3,4/5,6/7 are allowed. One side effect _ .
of this, is that you should always assign your hardware sprites using . te
even sprite numbers. Otherwise, AMOS will start your sprite from the .
next group of two, effectively wasting the first sprite. [e

Also note that if you try to create a large fifteen-colour sprite
with this system you could easily use up all the available sprites in
a single object. _ _ _ oy

WARNING If you are witing a screen scrolling gane, you may e,
encounter problens using sprites in conjunction with the SCREEN OFFSET
and SCREEN DI SPLAY commands. These generate a DVA clash between the
sprite systemand the screen bit-maps, and can occasionally lead to
unwanted screen effects, ye.veee X4

This problemis only relevant if you are using hardware sprites 6/7. ;
Wien the screen is shifted to the left with SCREEN OFFSET, the anpunt
of time for your sprite updates is reduced, as the screen DVA has
priority over the sprite system Unfortunately, there isn't enough
processing time to draw sprites 6/7,, and they wll therefore be .
corrupted on your display.

To clear up this problem create sprites 6/7 as individual hardware
sprites and position them off the screen using negative coordinates.
This will stop AMOS Basic fromusing them in your conputed sprites.
Providing sprites 6/7 are? never displayed on the screen during your
scrolling operations, all wll be well. i

The sprite palette

The colours required by a hardware sprite i\re stored in the col our

| e

al

m e

registers 16 to 31. Providing your current screen (node doesn't nake use : . o
of these registers,, the sprite colours will be conpletely separate from o i
your screen colours. Interestingly enough, this is also the case for ' Ty
the 4096-col our Ham {node. So there's nothing stopping you from e o
produci ng sonme m nd-blowing Ham ganes with this system o ' :

However you w Il encounter real problens when using 32 or 64 col our
screen in conjunction with three colour sprites. This is because the
colours used by these sprites &re grouped together in the follow ng
way: :

Hardware sprites Colour registers

0/ i 17 < 18/ 19
= 3 21/« 22/ 23
4 5 25 f 26 | 27
6./ 7 29/ 30/ 31

Col our registers 16,,20,24 and 28 are treated as transparent,, I L

X
The difficulty arises due to the way AMOS generates conputed sprites. ' :
The hardware sprites used to produce these objects vary during the !
course of a game, so it's vital to ensure that the three col ours used o7 .
by each individual sprite are set to exactly the sane val ues, otherwise =~ - ' !
the colours of your conputed sprites will change unpredictably, Here"s -.; o j
a small AiG procedure which will perform the entire process for you 151
autonatically,,

Procedure IJNT. .SPRTES
Get Sprite Palette
For 3=0 To 3 . '
For G=0 To 2 :
Col our 3*4+C+17, Col our (Q) : S S
Next C . . ' : o
Next S ,) e .
Endpr oc T '

The above restriction does not, of course, apply to fifteen-col our . ' o L
sprites. If you want to make the nost of the Extra Half Bright or L
32-co lour nodes,, you may find it easier to avoid using four-co lour e o
sprites altogether. } _ . _ o

© e g o

*GET SPRI TE PALETTE (grab sprite _ _ _
colours into screen) , !

GET SPRITE PALETTE [nask] S .o

This loads the entire colour palette used for your sprite inages into
the current screen. The optional "mask" allows you to load just a
selection of the colours fromthe sprite palette. Each of the 32
colours is represented by a single bit in the mask, nunbered from right
to left. The rightnost bit represents the status of col our zero,, the BT
next vit colour 1, and so on. To load a colour sinply set the C 4
appropriate bit to 1, If, for instance, you wanted to copy just the
first four colours,, you would set the bit pattern tos

CGet Sprite Palette £0000000000001111

Identically, since bobs use the sane sprite bank as sprites,, this
command can also be used to load the colours of « bob.

Controlling sprites

SET SPRITE BUFFER (set height of the
hardware sprites)

SET SPRITE BUFFER n

This sets the work area in which AMOS creates the images of the
hardware sprits. Acceptable values for n range from 16 to 256. TO set
the correct value for n, sinply examne the sprites in the sprite
editor and work out which is the largest sprite length wise, ANy sprite
that is larger than "n" wll sinply be truncated at the appropriate cut
off point.

SET SPRITE BUFFER is supplied for your use so that you can claim back
any redundant memory our game or application sinmply doesn't use.

The amount of ffiemryconsmed by the sprite buffer can be calculated
usingt heformulan

Memory = W4£8«3 = W96 . .

So the mnifflun buffer size is 1336 bytes and the maximum is 24Kk.
Notes This command erases all current sprite assignments and resets the
mouse cursor to its original state.

SPRITE OFF (renove one or nmore _ - 152
spritesfromthescr een) ' o
SPRITE OFF En]

The SPRITE OFF command renoves one or nmore sprites from the screen. Al
current sprite novements Are aborted. In order to restart them you'll
need to conpletely reinitialize your novement pattern.

SPRITE OFF Removes all the sprites from display
SPRITE OFF n Only deactivates sprite nunber n S, e

Note that your sprites are automatically deactivated whenever you call-
up the ADOS Basic editor. They will be automatically returned to their
original positions the next time you enter direct mode.

SPRI TE UPDATE (control sprite movements)
SPRI TE UPDATE [ON/ OFF] L S

The SPRITE UPDATE command provides you with total control of the
movements of your sprites. Normally, whenever you nove & sprite, its
position is updated automatically during the next vertical blank period
(see WAIT VBL). But if you Are nmoving a lot of sprites using the SPRITE
command, the updates will occur before all the sprites have been noved.
This may result in a noticeable junp in yur nmovement patterns,, In these
circumstances, you can turn off the automatic updating system with the
SPRI TE UPDATE' OFF command, , T

One:r, yaiit- sprites h«w? bsswn succcsfully moved, /OH Can thel! 511tlS

them smoothly into place with a call to SPRITE UPDATE. This will
reposition any sprites which have noved since your last, update,,

it ot Sl oy ot Bl A

e W T,

I

o

=X SPRITE (get x coordinate of a sprite)

%-X SPRI TE(n)

Returns the current x coordinate of sprite n, neasured the hardware
system This command allows you to quickly check whether a sprite has
passed of the edge of the Amiga's screen

=Y SPRITE (get y coordinate of a sprite)
y=Y SPRI TE(n) . _ . : ! o

Y SPRITE returns a sprite's vertical position. As usual, n refers to
the nunber of the sprite and can range from0O to 63. Renenber, al
sprite positions are measured in hardware coordi nates. See EXAMPLE 11.3

CGET SPRITE (load a section of the screen
into the sprite bank)

GET SPRITE [s,] i,xl,yi TO *2,,y2 . -

This instruction enables you to grab images directly off the screen and
turn theminto sprites. The coordinates xl.,yl and x2,>2 define a ’
rectangul ar area to be captured into the sprite bank. Nornally al

i mages are taken from the current screen, However it's also possible to
grab the image from a specific screen using the optional screen nunber

“5“ -

Note; There are no limtations to the region that may be grabbed in
this way. Providing your coordinates lie inside the existing screen
borders, everything will be fine.

i denotes the nunber of the new inage. If there is no existing sprite
wit'nthisnuffi ber ,anewi magewi. 11becreatedautomatically. AMOSwlil
also take the trouble of reserving the sprite bank if it hasn't been
previously defined. See EXAMPLE 1.1.4

There's also an equivalent GET BOB instruction which is identical to
GET SPRITE in a\>ery respect.-Since the sprits bank is shared by both
bobs and sprites, the images Are in exactly the same format,, So it's
perfectly acceptable to use both instructions in conjunction with
either bobs or sprites,, Try.changing the sprite instruction in the
previous example to something |ikes

Bob i 50,0,1

Conversionfunctions

=X SCREEN (convert hardware coordinates
=Y SCREEN into screen coordinates)

x~X SCREENdX,] xcoord)

y=Y SCREEN(Cn.;j ycoord)

LA g Tkt

Transfornms a hardware coordinate into a screen corclinate relative to
the current screen,, |f fhe hardware coordinates lie outside the screen
then both functions will return relative offsets from the screens
boundaries. Type the following fromdirect node;;

Print X Screen (1. 30)

The result will be -2. This is because the x screen coordinate O is
equal to hardware coordinate .18 and thus the conversion of .13 to a
screen coordinate results in a position tw pixels to the left of the -
screen. : :

If the optional screen number is included then the coordinates wll
be returned relative to screen 8 n, . S

=X HARD (convert screen coordinates - 154
=Y HARD into hardware coordinates) o

X=X HARD (En,3 xcoor d) e

These functions convert a screen coordinate into a hardware coordinate.
There are four separate conversion functions., the above syntaz converts
xcoord from a coordinate relative to the current screen to a hardware

coordinate. .

Y=Y HARD (En,] ycoord)

Transforns a Y coordinate relative to the current screen into hardware
coordi nate. As before,, n specif if es a screen nunber for use with the

functions. Al coordinates will now be returned relative to this
screen.

=1 SPRITE (return current image of a sprite)
| mage=l SPRI TE(n)

This function returns the current image nunmber being used by sprite n., .
A value of zero will be reported if the sprite is not displayed.

e T S

i

12; BUTTER OBJECTS (BGBS) ' 53

VWile hardware sprites are certainly powerful., they do suffer from a
coupl e of annoying restrictions.. The solution is to make use of the
Amiga's infamous Blitter chip,, This is capable of copying images to
the screen at, rates approaching a ml lion pixels per second! Wth the
help of the blitter it's possible to create what &e known as bobs.

Bobs, like sprites,, can be noved around conpletely independently of >
the screen wthout destorying any existing graphics. But unlike
sprites, bobs are sroted as part of the current screen,, so you can
create them in any graphics node you wish. This allows you to generate
bobs with up to 64 colours. Furthermore the only limt to the number
of bobs you can display is dictated by the available menory.

Bobs are slightly slower than sprites and they consunme considerably-
more memory. Therefore there's a trade-off between the speed of sprites,
and the flexibility of bobs. Fortunately there's nothing stopping you
from using both bobs and sprites in the same program : -

BOB (draw a bob on the current screen) 'L_ :
Bwn’ X”‘y’ I L | | . | . o . " ',. .|'
The BOB conmand creates bob n at coordinates x,y using the imge ft i.

nis the identification nunber of the bob,, Perm ssible values
normal ly range fromO0 to 63,, but the nunber of bobs may be increased
using an option from the AMOS configuration program, Providing you' ve
enough memory, you can set this limt to any nunmber you wish.

x and y specify the position of the bob using standard screen : - ot
coordi nates. These coordinates are not the same as the hardware -
coordinatesusedbytheequi valent SPRITEcomnand. L. kespri tes,, each
bob is controlled through a *hot spot*,, This may be changed at any tine
with the HOT SPOT command-

i refers to an imge which is to be assigned to the bob from the - f
sprite bank. The format of this image is identical to that used by the _ ¢
sprites, so you can use the sanme images for either sprites or bobs. o f

After you've created a bob, you can independently change either its :
position or its appearance by omtting one or more parameters from this : ;
instruction. Any of the nunbers x,y or "image" my be left out,, with
the mssing parameters retaining their original values. This is '
particularly useful if you are animting your bob with AMAL, as it
allows you to nove your object anywhere you |ike, wthout disturbing : f
your existing animation sequence. However you nust always include the I
commas in their original order. Exanple:

Load "AMOS . DATA: Sprites/Cctopus., abk" _ o :
Flash OFf s Get Sprite Palette oo S o
Channel 1 To Bob 1 : _ P A
Bob 1,0,100,1 B : .
Amal i.,"AimQ0, (1,4) (2,4) (3,4) (4,4)" : S : oo . 156
Amal On: : S s :
For X=i; To 320
Bob 1j, X, ;
_ Wi t \ Jbl
Next x ‘ _

Whenever a bob is noved, the area underneath is replaced in its
original position,, producing an identical effect to the equivalent

SPRI TE command.. Unlike STOS on the ST, each object is allocated its own
i ndi vi dual storage area. This reduces the anount of nenory used by
bobs, and inproves the overall perfornmance dramatically. Due to the
BIitter! of course, therse's no real conparison between STCS sprites
and AMCS bobs.

Al t hough the BOB command works fine for small nunber of bobs,, there's
an annoying flicker when you try to use nore than three or four objects
on the screen at once., This happens because the bobs are updated at the
sane time as the screen,, You can therefore see the bobs while they Are
being drawn which results in an unpleasant shimering effect.

One alternative for inproving the quality of your aninmations is to
just limt your bobs to the bottom quarter of the screen,, Since bobs
Are redrawn extrenely quickly, the updates can often be conpleted
before the lower part of the screen has been displayed. This provides
you with acceptably snooth novenents while consuning “ery little
menory, so it's a useful trick if you're running short of space. See
EXAMPLE 12.1 [S e o e e o -

Govi ously this cannot be seen as a serious solution to such a glaring
problem So before you throw away your copy of AH CS Basic: in disgust,
you'll be relieved to hear that there's a sinple way of elimnating
this flicker conpletely, even when you're using dozens of bobs anywhere
on the screen: :

DOUBLE BUFFER (create a double screen buffer) [/~ R

DOUBLE BUFFER #

Creates a second invisible copy of the current screen. Al graphics
operations, including bob noverments, & e now perforned directly in this
Al ogi cal screen*, without disturbing your TV picture in the slightest.
Once the inmge has been redrawn,, the logical screen is displayed, and
the original ~physical* screen becones the new | ogical screen™ The
entire process now cycles continuously, producing a rock solid display
even when you're noving hundreds of bobs around the screen at once,,

The entire procedure is performed automatically by AMOS Basic,, SO
after you've executed this instruction you can forget about it
conpletely. Note that since the hardware sprites are always displayed
using the current physical screen, this systemwll have absolutely no
effect on any existing sprite aninations-

Doubl e buffering works equally well in all of the AM GA'S graphics
modes. It can even be used in con j net ion with dual play-fields. But be
war ned! Doubl e buffering doubles the anount of nenory used by your
screens. |If you attenpt to double buf f er too nany screens, you ' 11
qui ckly run out of nenory. See EXAWMPLE 12.2

In practice, double buffering is an incredibly useful technique,
which can be readily exploited for nost types of ganes. It has seen
service in the vast nmjority of conmmercial games, including Starglider
- that's why it''s such an integral part of AMOS Basic. A detailed

expl anation of this process can be found in the SCREENS chapter. AL so
e Elher SCREEN SUAF- 51 AUTOSACK ciermven aurt gl ue -

S TmE R T

BET BOB n,back,ﬁlanes,ninterns

The SET BOB command changes the drawingfliodeused to display a bob on
the screen, n is the number of the bob you wish to affect

"back"” chooses the u& the background underneath your bob will be
redrawn. There are three possibilities: '

A value of 0 indicates that the area underneath your bob should be
saved in memory. The old image data is automatically replaced when
thebobi smoved, resullingasmoot hmovementeffect.

if the "back" parameter is positive then the original background
will be discarded altogether;, and the area behind the bob wll be
filled with colour "back"-!,, This is ideal for moving bobs over a
solid block of colour such as a clear blue sky, as it's much faster
than the standard drawing system,

Turn of the redrawing process completely by loading "back"™ with a
negative value such as -1. You can now deactivate the automatic

updating process using BOB UPDATE, and manually move your bobs with

a call to BOB DRAW This allows you to regenerate the screen

background using your own custom sed drawi ng routines. - . .

"planes" is a bit map which tells AMOS which screen planes your bob .
will be drawn in. As you. may know, the Am ga's screen is divided up
into a number of separate bit-planes. Each plane sets a single bit in
the final colour which is displayed on the screen.,

The first plane is represnted by bit one, the second by bit two and
so on. Normally the bob is drawn in all the bit-planes in the current
screen mode. This corresponds to a bitpattern of Milliiii, o/

By changing some of these bits to zero, you can omt selected colours
from your bobs when they are drawn. This can be used to generate a
number of intriguing screen effects,,

"fninterms" selects the blitter mode used to draw your bobs on the
screen. A full description of the available modes can be found in the
section on SCREﬁN! COPY, "minternt is usually set to one of two values

mi 00010 If the bob is used with a mask
*11001010 if NO MASK has been set

Feel free to experiment with the various combinations. There's no
danger of crashing your Amga if you make a m stake. Advanced Am ga
users find the following information useful,,

Blitter]source Purpose o S 158
A] Blitter mask
B: Blitter object
C, Destination screen

Note that you afe recommended to use SET BOB fchefore* displaying your
bobs on the screen. If you don't, the Am ga won't crahsh, and you. won't
get an error message, but your screen display may be corrputed

| B
! SET BOB (set drawing node of bob) 187

T emmgeaa -

kL)

NO MASK (renove blitter nask)

NO NASK [n]

As a default, a blitter mask is automatically created for every bob you
display on the screen,. This mask is conbined with the screen background
to make colour zero transparent. It's also used by the various

col lision detection commands.

The NO MASK conmand renoves this nask, ‘and forces the entire i mage to
be drawn on the .screen. Any parts of the inmage in colour zero wll now
be displayed directly over the existing background. ‘ o '

. n is the inmagé nunber whose nmask is to be renoved. This mask shoul d
never be erased! if the inage is active on the screen,, otherw se the
sasoci ated bob will be corrupted. If you nust renove the nask in this
way, it's inportant to deactivate the relevant bobs with BOB OF* first.
Here's an exarrplles

Centre "dick nouse button to renove mask"
Doubl e buffer s Load "AHOSJ)ATA: Sprites/actopus. abk"
Get Sprite Palette ' oo :
o |
Bob ij,X ScreenCX House),Y ScreensY House),!. : . _ o
If Mouse dick Then Bob Of s No Mask 1 T

See MAKE MASK

AUTOBACK (set automatic
screen copying node)

AUTGBACK n |

Wien you & e using a double hufferend screen, it's essential to
synchroni ze youf drawi ng operations with the novenents of your blitter
obj ects. Remenber that each double buffered screen consists of two
separate displays,, There's one screen for the current picture, and
another for the: inmage whilst it's being constructed. If the background
underneath a bob changes while it's being redrawn,, the contents of
these screens will be different,, and you'll get an intense and annoying
flickering efect.

The uni que AMpS AUTOBACK system provides you with a perfect solution
to this problen}. It allows you to generate your graphics in any one of
three graphics nodes, depending on the precise requirements of your
program, Just for a change,, we'll list tese options in reverse order.

AUTCBACK 2 (autonatic node - default) - Lo 159
: _ o . :
In this node,jail drawing operations Are autonatically conbined with
the bob updates. So anything you draw on the screen will be displayed
directly underneath your bobs, as if by magic, The principles behing
this system cgn be denonstrated by the follow ng code: ' :

Bob Clear i Rem Draw on first screen ,,. Renobve Bobs
Plot I5y,100 s Rem This can be anything you w sh
Bob raj s Rem Redr aw bobs

Seirewan Bwap oa Fom Bler e I T i marm

Wait \b.lL
Bob d ear

P

uw

Pl ot 150@]D0 : Rem Perform your operation a second time
Bob Draw

Screen Swap s Rem Get back to first screen

Vit ol j

As you can seej all screen updates are performed exactly twice.
There's one operation for both the logical and the physical screen
See EXAMPLE 12).3 for a denonstration
| .
One obvious Iside effect., is that your graphics now take twice as

long to be drajwn. Furthermore, the program will be halted by at |east

2 vertical blanks, etery time you output something to the screen.
This may cause: annoying delays in the execution of critica
activities such as collision detection.

AUTOBACK 1 (half-automatic: mode) - - . -_;_t*

Performs each igraphical operation in both the physical and logica
screens. Absolutely no account is taken of your bobs, so you should
only use this isystem for drawing outside the current playing area.

. Unlike the standard mode, there's no need to halt your program
until the next vertical blank,, Mode 1 is therefore ideal for objects
such as control panels or hi-score tables, which need to be upda ted
continually during the game.

AUTOBACK 0 (manda.1 mode) . ' e o

- Stops the AUTOBACK system in it's tracks. Al graphics Are now output :

straight to tljie logical screen at the maxi mum possible speed. You
should use this option if you need to repeatedly redraw large
sections of your background screen during the course of a gane..

This will allow you to safely perform your collision detection
routinesatr$guralintsrvals, withioutdestroyingtheoverallquality

of the animatlon effects Here's a typical program loop for you to
exam ne. : : : e :

Bob Update Of f o . I

Repeat | o o ' e

Screen {-Swp ' : .

Wait Vb,

Bob O er

Rem Now| redraw any of your gfxs which have changed

Rem Perform your game routines (Collision detection etc..)
Bob daji o ' . o SRR
Until WN | J N

Note that this ﬁrocedure will ONLY work if there's a smooth progression
from screen to |cresn. It's entirely up to you to keep the contents of
physical and locjical screen in step with each other An example of this
technique can bsi found i n EXAMPLE 12. 4 L eeee -
I

- Supposing forjinstance, you wanted to display a bob over a series of
random bl ocks, ton m ght try to use a routine like: _ . :

Load 'VV%OS_.i}ATA;Sprites?Sprites.abk" . Flash Off o

Get Spri-te Palette : Double Buffer s Cls 0 s Autoback 0

Update Gff : Bob 1,160,100,1

'Bob Clle ar *
X=Rnd(320)+| s Y=Rnd(200)+l ; W=Rnd(80)+

160

e SR B

"

HRd(I50| K1 : | =Rnd(i 5)

Ink I I': Bar X Y To X+W Y+H —
Rem <tihis would nornmally call your collision detection routine.:"
Bob I)flaw
Screed swap : Wit VWbl

Loop ‘

But since there'.s no relationship between the physical and | ogical
screens, the display will now flick continuously from screen to screen.
To overcone thiq problem vyou'll need to mmc the original AUTOBACK
system, Replace! the lines in the previous exanple between the |ines

Do and Loop asjfol | ows: o S -

Rem Ubdate first screen

Screert Swap : Wait Vbl . . e
Bob cj ear "eece' e
X=Rnd| 320) +| : Y=Rwd@Ml ; W=Rnd(80)+|
H=Rnd(50) +| : I=Rnd(15)

Inkl! sBar X.Y To XH ;S-H

Bob Df aw

Rem Update second screen
Screeiji Swap: Uai t Vb1l

Bob Clear-

Ink 1]z Bar X,Y To' X+W,Y+H
Bob Df aw

The two screens;: are now updated with exactly the same infornation,, and
the display remains as steady as a rock., even though there's a great
deal of activity going on in the background.

Aut oback can be safely used at any point in your program So it's
perfectly possi ﬁ)le to use separate drawing nethods for the different
parts of your sjrreen. It's also totally conpatible with all graphics
operations including Bl ocks, lcons,, and W ndowi ng.

Bob Control corrmands

BOB UPDATE (control bob movenments

BOB UPDATE [ON ()FF] B ' ' o S SR

|
Normally all boJDS are updated once every 50th of a second using a
built-int interrupt routine. Alhouth this is convenient for nost
programs, there|are some applications which require much finer control
over the redravvi_Lng process.

BOB UPDATE OFT turns off the bob updates and deactivates all
automatic screen sw tching operationsif they' ve been se 1 ectsd. You. may
now redraw your-| bobs at the nost appropriate point in your program
using the BOB UPDATE command. This is ideal when you &e animating a
| arge nunber of objects as it enables you to nove your bobs into
position before|draw ng themont he screen, Inevi tably this resulls i n
far smoot her ne-kements in your game. : -

One word of w<trning: The bob updates will only occur at the NEXT
vertical blank, [Also note that BOB UPDATE will always redraw the bobs
on the current logical screen, so if you forget to use the SCREEN SWAP

wmmmardy, vedthing wWill L ppacestlpy bhoappen.

161

T e

w

|
BB I CLEAR (renmpove all the bobs from the screen)

BB CLEAR

Renoves all actj.ve bobs from the screen, and redraws the background
regions underneath. It's inteded for use with BOB DRAW to provide an
alternative to the standard BOB UPDATE comand

[

BOB DRAW (redraw bobs)

BOB CRAWJ

Wienever the boss &s redrawn on the screen, the follow ng-sfeps are

automatical ly performed:

1. Al active bobs Are renoved from the LOG CAL screen and the
background regions are replaced. This step is perforned by BOB

CLEAR. |

2. Alist is made of all bobs which have nmoved since the previous
updat e.

3. The background regions under the new screen coordinates Are saved
in menory. e

4. Al active (bobs are redrawn at their new positions on the | ogical
screen

5. If the DOUB-E BUFFER feature has been activated,, the physical

and |ogical; screens are now swapped

_ |
The BOB DRAW cohnand performs steps 2 to 4 of this process directly,,

Supposing you wished to create a screen scrolling arcade game. In this
situation., it would be absolutely vital for your scrolling operations

to be perfectlyl synchronized with novenment effects. If the aliens were
to nmove while the scrolling was taking place, their background areas
would be redrawnat thewongplace. Thi. swouldtotallycorrupt ;/datr
di splay, and wonld result in a hopeless junble on the screen. Load
EXAMPLE 12.5 fdr a demonstration of this process. :

N

=X BOB (get X coordinate of bob)
xI =X BOB(n)
Returns the curfent X coordinate of bob nunber n. This coordinate ig

measured relatijvs to the current screen,, See also Y SPRTE, X 11Q85F and
Y HOUSE.

=Y BOB (get Y coordinate of bob)
yl =Y BOB(n) | | o |
Y BCB conplenents the X BOB comﬁnd by returning the Y coordinate of

bob nunber n. Thiis value will be returned using normal screen
coor di nat es.

=1 BOB (return current image of bob)

162

LA o -

e g .

+*

IS

I rnage*U BOB(n)

This function returns the current image nunber being used by bob n.. #
value of zero wjill be reported if the bob isn't displayed.

LIMT BB (limt a bob to a rectangular .'
region of the screen)

LIMT [n] kl,yl TOx2,y2

This command reistricts the visibility of your bobs to a rectangul ar
screen area enclosed by the coordinates xl,yt to x2,y2., The X

coordi nates are!I rounded up to the nearest 16-pixel boundary. Note that
the width of this region nust always be greater than the w dth of your
bobs,, otherwi se you' Il get an "illegal function call" error.

If it's included, n specifies the nunber of a single bob which is to
be affected by (this instruction., otherwise *all* bobs will be
restricted. Youj can restore the visibility limt to the entire entire
screen by typings : :

LIMT Blik

CGET BB (load a section of the screen -
into the sprite bank) . '

GET BAB 5.1 i.xlLyl TO x2,y2

This instruction is identical to the GET SPRITE command. It grabs an '
image into the Isprite bank from the current screen, : '
|

| .
xl,yl to x2,yb are the coordinates of the top and bottom corners of
the rectangularj area to be grabbed.
i specifies tpe i mage nunber which is to be loaded with this area, s
sel ects an optional screen nunber from which the inmage is to be taken.
See GET SPRITE tor nmore details. See also EXAMPLE 12, 6. R

PUT BOB(fixaxopyaf abobontot hescr9en)

PUT BOB n

This is the exaqt opposite of the previous GET BOB command. The action
of PUTBOBis ti place a copy of bob number n at its present position
on the screen, It works by preventing the background underneath the bob
from being redrgwnduringthenext.verticalblankperiod,.lnorderto
synchronise the|hob updates with the screen display, you should always
follow this coffihand with a WAIT VBL instruction.
| .

Note that aftoV this instruction has been performed,, the original bob
may be moved or janimated with no ill efects.

" FAETET BOB <diraw w&rm dimage FTroe the sped b
bank on the screen)
' -

163

T e T,

PASTE BOB x,y, I

The PASTE BOB c:dfnmand draws a copy of
coordinates x,y4 Unlike PUT BOB this i

I mmedi ately, and
| CON.

BOB OFF En]

Cccasinoal ly,, 4
al together. The

BOB OFF (remove a bob

BOB OFF command erases

termnates any associated animations,,

removed by this

instruction. . ..

i mage nunber | at *screen#
mage is drawn on the screen

all thendrmalclippingrulesareobeyec!,SeePASTE

from the display)

u my wish to renove certain bobs from the screen

bob number n from the screen and
[f nis omtted, all bobs wll be 164

ey

The nouse p0| nt &

In this section
using the sprits#
Basi ¢ program T
using the nouse

The nouse cursot
Alternative to 1
can replace the
also a group of
position and st 3

X HUSE., Y noust

HEI

H DE COM

13;: OBJECT CONTROL . 165
you w II f| nd out how the various objects generated
and bob commands can be controlled from within an AMOS
he topics under discussion include collision detection,,
cursor and reading the joystick.

r
provi des the ganes programmer with a val uabl e

he standard joystick. Wth the CHANGE MOUSE command you
nouse with an image in the current sprite bank. There's
instructions which allow you to deternmine both the

tus of this nouse at any tine. These include the

and MOUSE KEY instructions.

BE (renove nouse pointer from the screen)

This command removes the nouse pointer from the screen conpletely. A

count of the nu
internally by tj
of SHOW instruc

ther of occasions you have called this function is kept
he system This needs to be matched by an equal nunber
rions before the pointer will be returned on the screen,.

There's also fnother version of this instruction which can be >,

accessedwi t hHEDE QN.
mouse, no matter

This ignores the count and *al ways* hides the
how many tines you've called the SHON command.

Note that HIDE only nakes the nouse pointer invisible. It has no

effect on any ofher AICS commands.,

so you can still use X MOUSE and

Y ROUSE functiosis to read the coordinates of the nouse as normal .

SHOW [ON]

SHOW (activate the nouse pointer)

This returns theé nouse 'poi nter to the screen after a H DE instruction,,
Wrks the same fay that H DE does. :

CHANGE HOUSE m

Thisallowsyou
nouse patterns ;:
the nunbers 1-3

If you specify it
image stored in
using the expre*;

value of 4.

In order to u<t

CHANGE MOUSE (change the shape of
the nouse pointer)

to change the shape of the nouse at any tine. Three
re provided as standard,. These can be assigned using

value mgreater than 3, this is assumed to refer to an 166
the sprite bank. The nunber of this image is determ ned
sion |=m™3. So inage nunber 1 would be installed by a

e this option, your sprite inmage nust be exactly 16

e sy s

pi xel s wi de and
linmt to the het

k=MOUSE KEY

have no more than four colours. However there's no such
ght of your image.

=-MOUSE KEY (read status of nouse buttons)

Enabl es you to yuickly check whether one or nore of the nouse keys have
been pressed. It returns a bit-pattern which holds the current status

of the mouse buf;ons. . _ _ - e .
Bit O Set to 1 if the LEFT button pressed,, otherw se zero.
Bit 1 Set to 1 if the RIGHT button pressed, otherw se zero.
Bit 2 |Set to 1 if the MDDLE button pressed (if avail able).
=MDUSE CLICK (check for a mouse click) |
c=MUSE CLI CK

Checks wheier ths user has "clicked" on a nouse button. Uses the sane
bit pattern irsdication as "MOUSE KEY. : ' -

One shot tests xre only set to 1 when the nouse key has just been

pressed. These ¢
tested once. So

=XMIUSE~
x| - X MOUSE

X HOUSE returns

yits Are automatically reset to zero after they've been
they will only check for a single key press at a tine.

(get/set the X coordinate of the mouse pointer)

the current X coordinate of the nouse pointer in

hardware notati én. You can also use this function to nove the mouse on
to a specific screen position. This can be achieved by assigning X

MOUSE with a va

X MOUSEs

yi =Y MOUSE

Returns the Y cg
set the Y positi
See EXAMPLE 13. {

LIMT MOUSE xI . ¥

Restricts nouse
har dware coordin

the nmouse is com
beyond it. Sinp]

ue, just like a Basic variable, for exanple;

(get/set the Y coordinate of the mouse pointer)

ordinate of the nouse pointer. This can also be used to
on of the nmouse pointer the same way as using X MOUSE,
for an exanple of the X HOUSE and Y MOUSE .

LIMT HOUSE (limt nouse to a section
of the screen)

1 TO x2,,y2

movements totherectanjular v > i» & dsfinodb> i. i3,

ates (xl,yl) and (x2,y2). Note that unlike LIMT BOB,
plstely trapped inside this zone and cannot be noved

y use this instruction with no paraneters to restore

167

- e T T

R

the mouse to the

full screen &rea.

LIMT wiJSE

See al so EXAMPLE

13.2 from the manual folder for a demonstration,

atick

%@QEE&&xLH&:}:Q)‘::::::: . .
AMOS Basic incl ydes six functions which allow-you to immediately check

the nmove nerits of
socket s.

d--JOr(j)

This function r4
status of a joys

a joystick insterted .in either of the available

:30Y(readjoystick} ' ' - : _ 168

turns a binary number which represnts the current
tick in port number j , Nor ma 11 y yaur j oystick will be

placed in the 1gft socket (number 1). However you can remove the mouse

from the right-t
accessed using @

The state of 1
binary bits in t
has been perfor
has proved posi t
direction. Here

Bt ~nmb

See EXAMPLE 13. 3%

You can also usg
this binary nota

X JLEFT(j)

x=JR GHT(i) T
x=JUP(j) §
x=3DOWN(j) d
f
v

Detecting colli %
If you're witin
check for collig

and socket and replace it with a joystick. This can be
ort « 0. .

he joystick can be read by inspecting the pattern of

he result., Each bit indicates whether a specific action
ed by the user. If a bit is set to one then the test
ive and the joystick has been noved in the appropriate
s a list of the various bits and their meani ngs!

er Si gni ficance

Joy noved up

" down
B left
n ri ght

Fire button pressed

the following commands, if you are not famliar with
tion:

=JLEFT(j) (test joystick novenent |eft)
JRGA-{T(j)(testjoystickmovement right)
= JUP(j)(testjoystic.kmovement up)

=JDOWK! (j) (test joystick movement down) ' o 16?
hese functions return a val ue of Ql(true) if the

oystick in port j has been pulled to the associ ated

irection. Value O is reported,, if the condition is

alse (joystick hasn't been noved to the asked

irection).

i ons

g an arcade gane it's vital to be able to accurately
ions between the various objects on the screen,, Al C5

e -

Basic, includes f
tests quickly art

ive powerful

functions which allow you to perform these
d easily.)

Detecting colligions with a sprite

c=SPRITE COL (n

This provi des y>q
more sprites ha
active hardware

collision has og¢

the result wll

The standard
can also test a
conmand:

C=SPRI TF:

The above

then get
COL function.

NOTE that in

parameters s to

examned with the COL command

CoI||S|ons bet we

c=SPRI TEBOB CCOL

instriAction checks for
sprites s to e [inclusive).
the ingividual

j rder
sprite mask wit F
not be detected}

S

SPRITE QL. (detect collisions between
two hardware sprites) , '

Cs Toe]) = B

hU with a sinple &y of testing to see whether two or .
e collided on the screen. The number n refers to an

spritewhichistobec. li ckedforacollision.Ifa
cur red a value of --1 (true) will be returned, otherwi se

be set to 0 (false). o o
iProm of this function checks for all collisions. But you

whol e group of sprites using an extended version of the

COL n,s TO e

collisions between sprite n and
Once you've detected a collision, you can
sprite numbers which have vollided using the

to use this function,, you'll need to create a
the MASK command first, otherwise your collisions will
A detailed example of this command can be found in

EXAMPLE 13. 4.
Detecting col lijFions with a bob B o o
BOB COL (detect collisions between
twobli llerobjects)
c=BOB(n, [,s TO|e])
The BOB COL funjtion checks bob number n for a collision with another
bob. If a collition has been detected., the value returned in ¢ will be
set to -1 (truef, otherwise it w1l be 0,
_Noynally the tommand will check for all collisions, but you CS.P,
specify a collegtion of bobs to be tested using the optional range

e. The status of these bobs can be |nd|V|dua||y
See EXAMPLE 13,. 5.

en bobs and sprltes ' . '; " . o '

RITEBOB COL (test for a co|I|3|on between

wprr i bern merel Dees ke 3

ni[,s TO ef)

©en i g e

L e -

This function drecks for a collision between SPRITE n ane one or nore

BOBS. The val ue
di scovered, or ¢

of ¢ will be either -1 if a collision has been
» if there have been no collisions. The starting and

ending points specify that collisions will only be detected between the

bobs s to e. If
tested by this

WARNI NG Col |
possible on a 1
used for bobs ai
this function w

B

' c=BGBSPRI TE OCL

they B.re not included then all active bobs wll be

jnstruction.

ision detection between a sprite and a bob is only

nw resolution screen,, In H Res node, the pixel sizg%
id sprites s.re totally different, and the results from
.11 be unreliable,. :

JBSPRI TE OOL (test for a collision between
bobs and sprites)

{n<i"ias TO €j)

The BOB SPRITE 0L function checks for collisions between a single bob

and several spr

ites. The results and usage of this instruction &e

sanme as in the PRI TEBOB COL. See EXAMPLE 13.&

b

c=Q0L(n)

=COL (test the status of a sprite or
nb after a collision detection intruction)

The OOL array helds the status of all the objects which have been
previ ouslytest@ri by the collision detection functions,

Each object ysu have checked is associated with one element in this .
array,, This elempent will be loaded with -1 if a collision has been
detected with object number n, or O if it has not. The nufiibering system

is sinples The
nunber 1, the sc
13,7+

first element in the array holds the status of object

rcond represents _obj ect number 2, and so on. See EXAMPLE

If you are using the SPRITE COL or BOBSPRITE COL instructions then
the objects will be hardware sprites, otherwise they will be bobs,, In-
order to avoid gonfusion, it's sensible to call this instructoin

imediatly aftex the relevant detection conmand,

HOT SPCT i mage,

in the sprite bank)

tyY

HOT SPOT i nmage, p

This comrand set

s the hot spot of an imnge stored in the current sprite

bank. The hot sp'ot of the object is used as a reference point for all

coordi nate calcu

|ations,, There Are two versions of this instruction.

HOT SPOT| j nage, , X..y

x and Yy coordi nAtes mE Aes UFe de$'s yonui <+ ho-tople-Ftcovne?* o-Fi-hs?i nixge«
These coordinates will be added to the sprite bank or bob coordinate to
position an object precisely on the screen. :

HOT SPOT (set the hot spot for an image _ ' 171 '_

R L

Ee)

xn

— za wm

HOT SP3
This is a short
of nine predef

bel ow where the
$#11.

$00
$¢1
302

MAKE MASK [n]

Defines a mask
by all the AMOS
therefore creat
the inmage nunbe
sprite bank. Th

It's inportan
boh is first dr
in the running
call

{Collisions wth
AMOS Basic incl
check whether a
screen,

These screen
rebound games s
i ndi vi dual seres
and swi tches nes

to MAKE PIA

irite inmage
RS

r

ied positions,,

r

i

i

ELE TR

hot spot;

image, . p

form of

centre point of

$10 $20
$11 $21
$12 *22

Note that it's perfectly
iefal for the hot spot
to lie outside the
actual inage,,

B S L

the instruction which noves the hot spot to one
The positions Are shown in the diagram
the imge is represent

by a val ue of 172

See EXAMPLE 13.8..

NAKE MASK (nmake a mask

n,

around an inmage for

lground image number n in the sprite bank.
Basic collision detection commands.
? A mask for every object
then a mask wil
is may take a little time. :

rectangularblocks

.ides a number of functions which allow you to quickly

collision detection)

Thi's
You should
you wish to check. If you. omt
be generated for each image in the

is used

t to note that masks é&re genérated automatically when a
awn on the screen.
yf your

This mght cause a significant delay

program so it's worthwhile placing an explicit
JX during your initialisation procedure.

sprite or bob has entered a rectangular region of the

n zone.

cones are especially useful for collision detection in
ich as Arkanoid as each block can be assignet

its own

You can al so use zones to construct the buttons
pded for control panels and di al ogue boxes.

RESEfWVE ZONE (reserve space for a detection zone)

RESERVE ZONE En|

RESERVE ZONE ali
This command shc
ZONE.

The only limj.

momavye =ooQt'A

of zones in one
and restore the

ocat.es enough memory for

exactly n detection zones.

uld always be used before defining a zone with SET

to the number of

perfontls Foamnible fa defFine hunderoede

of your programs.

of available

B]

zones is the amount

L B R R Y

To erase the current zone definitions

ffl efnorybacktothemai nprogramsimplytype

RESERVE

SET ZONE z, xI, yl

Defines a rectangular

various ZONE CO
and x| .yl and
right

Before using
your zones with

t =ZONE(| s], X.1y)

ZONE returns thi

After ZONE ha
at the specifier

Note that ZOM

won't detect an;
It is possibl

Y BB functions

zone. This can

X=ZoneCX

See Examples 13}

t =HZONE([s], X, ¥

HZONE i s al nost
now neasured in

function to det#ct when a hardware sprite enters one of

zones. For exam
X=Hzone

See al so EXAHPLI |

vdny2 input
hand corn?rs of

il ONE with no paraneters,

SET ZONE (set a zone for testing)

TO x2,y2

rlmands,
the coordi nates of
the rectangle..

vhis instruction you'll
RESERVE ZONE.

=ZONE (return the zone under the
the requested screen coardinates)

©ow

nunber of the screen zone at

an optional screen nunber s in this function,.
% been called, t will hold either the nunber of

@ coordinates or a value of 0 (false).,

only returns the first zone at these coordinates -
v other zones which lie inside this region.

to use this function in conj unction with X BOB and
to detect whether
se acconplished using the follow ng codes

i

154

X bob(n)j,Y Bob(n)) L ‘o

2 and 13.10. . e,

=HZQWE (return the zone under the
requested hardware coordinates)

b

identical to ZONE except that the screen position is
hardwarecoordinates. Youcanthereforeusethis
your screen
0| eu

X Sprite(n),Y Sprite(n))

£ 13.11, and ZONE, MOUSE ZONE, SET ZONE and ZONE*

H OUESI S, T

koo e

20UC <<:ih«erl,_ Il e N podn

has entered a zone)

zone which can be subsequently tested using the
z specifies the nunber of the zone to be created
the top left and bottom

need to reserve sone space for

the graphic coordi nat es
X,y« Normally the coordinates & & relative to the current screen - you
can al so incl udeg

the zone

it

a bob has entered a specific screen -

173

X=MOUSE ZONE

The HOUSE ZONE -}
occupi ed by the

X=Hzone

RESET 7.OVE [z]

This comrand pe
ZONE. If the op
will be reset,

RESET ZONE only
nenory all ocate

Sob priority

PRICRITY ON OFF

Each bob is ass:
uses this nunbe
on the screen,

be displayed in
priority value

You should re
The choi se of n
your obj ects on

In addition t

b

unction returns the nunber
nouse pointer.

of the screen zone currently
It's equivalent to the lines

X mouse, Y nouse)

RESET ZONE (erase a zone) 174

-manently deactivate any of the zones created by SET
tional zone nunber z is included then only this zone
otherwise all the zones will be affected. Note that _
erases the zone definitions., it does not return the
{1 by RESERVE ZONE. ' o

PRICRITY OV OFF (change between priority nodes)

Lgned a priority value ranging from 0-63. Anps basic

> to decide which order the objects should be displayed
vs a rule,, any bob with the highest priority will always:
frontifanyobjectswithalowerpriority. The

is taken directly from the nunber of a Bob,,

nesnber this fact when assigning nunbers to your bobs,
.unber can have w de ranging effects on the appearance of
the screen, o ot

3 the standard system it's also possible to arrange the

bobs according ‘to their position on the screen,, PRIORITY ON assigns the
greatest priori tty values to the bobs with the highest Y coordinates,
This allows you|to create a useful illusion of perspective in your
ganes,, Look at {Lhe exanple bel ow:

Load "All O8J) ATA/ Sprites/Mnkey_right,abk" 2 ds Fl ash O f

Get Spri te Palette

Priorites O0f s RemSet normal node :

Bob I,1'%0, 100,2 : Bob 2,0,72,2 : Bob 3,320, 128,2 >

Channel |2 To Bob 2 s Channel 3 to Bob 3 -

Add 2,% |oops 11 320,0,320 ; H-320,0,320 ; Junp Loop"

Amal 3,1 Loops Meses320,,0,30 ; d 320,,0,320 $ Junp Loop"

Aal On

VWi t Ke;y

Priori ty On s Rem Set Y node .

Vait Key - - ‘
Hornmal |y, both Roving bobs pass below the object in the centre.. Wen
you change the flriority systemwth a call to PRORITY ON, the bobs are
now ranked in order of their increasing Y coordinates. So bob three
noves aboce bob [gne whil e

bohind it.

at the sane tine, bob two passes snoothly

H NT; It's usUaIIy best to position the Hot Spot of the sprite at it;;

base. This is because the Y coordinates used by this command relate to

the position of

the Hot Spot on the screen. Also notice that the

PRIORITY OFF instruction can be utilised to reset the priority back to

nor mal

UP
UPDATE [ON/ OFT]
Wormallvanyob,
redisplayed whei
temporarily hal
not active the
Actual ly, all vy
the results are

redrawi ng opera
three different

UPDATE
Turns of the au

UPDATE
Redraws any spr:

UPDATE

Returns the spr:

: smands

DATE(changeaut omati csprite/bobupdates)

iects you draw on the screen will be automatically
lever they Are animated or moved. This feature can he
Led using the UPDATE OFF command. \hen the updates Are

:SPRITE, BOB and AlIAL commands apparently have no effect,

Jur ani mations are working correctly - it's just that
not being displayed on the screen,, You can force this
tion at any time using the UPDATE command. Here are the
forms of the UPDATE instruction. : :

OFF

tomatic updating,.
.tes which have changed their original positions

.te updating to normal. See EXAMPLE 13,12,

175

g e A

14; AA...

If you wish to igenerate the snooth novenent required in an arcade gane,
it's necessary io nove each object on the screen dozens of tines a
second., This isjJ a real struggle even in machine code and it's way
beyond the abil ities of the fastest version of Basic,

AMOS si destepiee this problem by incorporating a powerful animation
| anguage which |i.s executed independently of your Basic prograns, This .
is capable of gsnerating high speed animation effects which would be
i mpossi ble in sftandard Basi c, : '

The (AMos (A)nimation (L)anguage (AVAL.) is unique to AHOS Basic, In
can be used to |animate anything from a sprite to an entire scren at
incredible speeli« W to 16 AVAL. prograns can be execut ed sinul taneously
using interrupt

i

Each program |controls the novenments of a single object on the screen,

(bj ects may be |irwed in conplex predefined attack patterns, created
from a separate| editor accessory™ You can also control your objects
directly from tlhe mouse or joystick if required,

The sheer ver(satiiity of the AIA system has to be seen to be
bel i eved. S o o .

AMAL principles
ARAL is effect!iely just a sinple version of Basic which has been
careful | y opt ifjiised for the maxi mum possible speed* As with Basic,,
there are instrjuctions for program control (Junp), nmaking decisions
(If) and repeat{my sections of code in loops (For...Next). The real
punch cormes whepi AMAL program is run. Mt only are the conmmands
lightning fast but all AHAL prograns are *conpi | ed* before run-tine,.

AVAL comrands| are entered using short keywords consisting of one or
nmore capital lefter-%. Anything in lowercase is ignored conpletely. This
allows you to pjad out your AMAL instructions into sonething nore
readable., So thle M command m ght be entered as Hove or the L
instruction as |et, : :

|
|

AMAL instructions can be separated by parctically any unused
characters inclliding spaces. You can't however,, use the colon ":" for
this purpose, ajs it's needed to define a |label. W advise you to use a

senmi-colon ";" |to separate conmands to avoid possible AVAL headaches.

There are two| ways of creating your AMAL programs. The first is to
produce your anfimation sequences with the AVAL accessory program and
save them into 3. nenory bank or you can define your animations inside

AHCS Basic usini3 the AMAL command. The general format of this function
is: :

- AMAL N, a$

"n" is the identification nunber of your new AMAL program As a default

all prograns & f assigned to the relevant hardware sprite. So the first
AMAL program controls sprite nunber one,, the second sprite nunber two,
and so on. You [:an change this selection at any tine using a separate

CHANNEL command |. a$ is a string containing a list of AMAL instructions

te bo perFfoacmosd! Jo aae progeam. Hesoe s s widople osoasples

Load " N fi G5 DATAsSprites/!Vi onkey _right,, abk"

176

Get Sprijte Palette

Sprite 81,130,50,1

Amd 8,"8s M 300,200.,100 ¢, M 300,200,100 J S'
Aral On |8 ¢ Rem Activate AMAL program nunber eight
Di rect

The prdgr'am reti irns you straight back to direct node with the D RECT
command. Try typiing a few Basic commands at this point. You can see the

novenent patterr) continues regardless, without interfering with the
rest of the system Al so note we have used sprite 8 to fores the
use of a conputed sprite. Al conputed sprites from8 to 15 ars

automat i callyaaf. signed to the equival ent channel nunber by the AHAL
system, So ther;:'S no need for any special initialisation proceciures.

Unl ess you W'sh‘to restrict the anmount of hardware sprites it's safest
to stick to justI computed sprites in your programs. Notice how we've
attivated the ANAL program using the AMAL ON command. This has the
format: :

AMAL ON} [prog]

"prog” is the njwber of a single AMAL program, If it's omtted,, then
all your AMAL| programs will be executed at once!

AVAL tutorial

Ve' Il now provide you with a guided tour of the AVAL system This
allows you to sjlowy famliarise yourself with the nmechanics of AVAL
programs, w thout having to worry about too many technical details,,

For the tine jseing we'll be concentrating on sprits novenents, but
the same princi Des can also be applied to bob or screen animations,,
|

Start off by |oadi ng some exanples into nmenory,, These can be found in
in the SPRI TES IfoI der on the AMOS data disc. To get a directory of
Sprite files type the following from the direct w ndows;

|
Dir "AW)S_PATA! !
To load a spritj?? file, type a line Iike;.

Load " All\/DS_. DATAsSprites/ Octopus. abk"

Moving an object
As you would exipect from a dedicated animation |anguage, AMAL allows
you. to move yout objects in a variety of different ways. The sinplest
of these involvizs the use of the Myve command.

Move (rrbve obj ect)

M ow_h n

T he 11 command moves an object w units to the right and h units down in
exactly n movement steps. If the coordinates of your subject were
(X,Y)j, then the' object would progressively move to X+W Y+H.

M 100,100,100 would move it to 200,,200. The speéd of this motion
depends on the number of movement steps. If n is large then each

177

178

|
fndi vidual sprite novement will be small and the sprite will nove very .
slowy,. Conversely? a small value for n results in a large novenent R -
steps which jerk the sprite across the screen at high speed,. Here are T
some exanmples of the Mve command.

Rem Thi £ noves an octopus down the screen using AVAL

Load "A'tlIOS pATft: Sprites/ Cctopus.abk" s Get Sprite Palette
Sprite £,300,0,1

Amal 8, til 0,250,50" s Amal On 8 : Wit Key

Rem Moves octopus down and across the screen

Load "AI'I%JDATAsSprites/Octopus.abk" s CGet Sprite Palette
Sprite 1LO, 150, 150, 1

Altd 10, "M 300, -100,50" :: Amal Oh 10 s Wit Key

Rem Demfi nstrates multiple Mve commnds.

Load "Afi OS_DATA! Sprites/Cctopus.abk" 5 CGet Sprite Palette .
H$="How? 300, 0,50 ; Myve -300,0, 50" . - A\
Sprite LI, 150, 150, 1 ' :
Amal 11\ Mp : Amal On 11 s Wit Key

Noti ce how we'v*; expanded M to Mwve in above pfogram Since the letters
"ove" Ar& in lcilner case, they will be ignored by the AMAL system.

At first glance, Mve is a powerful but unexciting little
instruction. ItJ's ideal for noving objects such as missiles, but
otherwiseit's prelly un:i.nspi ring,

Actually nothilng could be further from the truth. That's because the
parameters in tlie nove instruction Are not limted to sinple numbers.
You can also usfe conplex arithnetical expressions incorporating one of
a variety of usyful AMAL functions., Exanple:

Load "AiJlOS_, DATAsSprites/Octopus.abk" : Get Sprite Palette
Sprite JL2,150,150,1 s Amal 12,"Myve XM X YM-Y, 32"
Amal O1!| 12 : Wit Key

This smoothly mDves computed sprite 12 to the current nouse position.' X
and Y hold the jroordinates of your sprite,, and XM and YM Are functions
returning the current coordinates of the nouse,, S

It's po'ssi ble to exploit this effect in games like Pac-Man to
make? your obj ects chase the player's character. Examle:

Load Iff "AMDS DATASI FF/ Frog. Screen.|FF", | . : . :
Channel!'1 To Screen Display 1 T
Amal 1,]'Mve 0,-200,50 5 Myve 0,200, 50" ' "
Amal Onj1 : Direct

Channel assigns|an AMOS program to a 'p'arti cular object. W'Il be
discussing this|command in detail slightly later, but the basic format
s '

*

CHANNEL: p TO obj ect n

"p" is the nun‘oér of your AVAL. program Allowable values range from 0
to 63, although;only the first 16 of these programs can be performed
using interrupts. _ . . _ , o

"obj ect” speciifies the type of object you with to control with your

Sprite ~ (values >7 refer to conputed sprites)

e

| *
I

|
Bob ! (blitter object)
Screen Display (used to nmove the screen display)
Screen Cffset (Hardware scrolling)
Screen s|ize (Changes the screen size using interrupts)
Rai nbow |! (Ani mates a rainbow effects '

|]
n" is the nunbejr of the object to be animated. This object needs to be
subsequent|y defined using the SPRITE, BOB or SCREEN open instructions.

Ani mat i on

Anim (animate an object)

Hn (i mage, dei a>jl) (imge, del ay) .., .

The Anim instruction cycles an object through a sequence of images,
producing a snooth animation effect,, "n" is the number of tines the
animation cyclejis to be repeated., A value of zero for this paraneter

will performthg' animation continuously.

"image" sprcifies the number of an image to be used for each frame of
your animation., j "delay" determnes the length of time this image is to
be displayed on'.the screen, neasured in units of a 50th af a second.
Exanpl es i

Load "AijOS_DATA:Sprites/Ptonkey_right-abk" s Get Sprite Palette
Sprite f,150,50,11

M*=YAniij»'i2, (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) ;" - - 180
i1$=M$+"Iflove 300,, 150,, 150 ; Rove -300,-150,75" ' .
Amal 9, ifl* . e

Ani Oni'9 : S

Direct |

This program conbines a sprite novement with an animation. Notice how
we' ve separated!the commands with a sem-colon. This ensures that the
two operations Are totally independent of each other. Once the
ani mati on sequence has been defined, AHAL will immediatly junp to the - .-
next instruction, and the animation will begin. A

It's irrportantf to realize that Animonly works in conjunction wth
sprites and bob™. So it's not possible to animate entire screen wth
this comand, |

Sinpl e Loops

Junp (redirects an AMAL program
3 1abel | | "
Junp provides a:sinple way of novi ng fromone part of an AVAL. program |
to another, "label" is the target of your junp, and nust have been
defined el sewhere in your current program Al AIA |abels are defined
using a single uppercase followed by a colon., like instructions, you

can pad them out with |ower case to inprove readability.

Remenber that each label is deinfed using just a *single* letter. So
"Ss" and "Swoops" refer to the same label! If you attenpt to define two

PSR- |

| abel s starting with an identical letter, you'll be presented with a
"label already defined in animation string" error,,

Each AMAL program can have its own unique set of labels. It's
perfectly acceptable to use the identical labels in several different
programs. Example: o

Load "AMj)S_DATAsSprites/Octopus.abk" ' ' .
Get Sprite Palette . '
For S-8 -to 20 Step 2 : Rem Set up ? conputed sprites

Sprite £,200, (S 7)*13+40, |

Next S | . . -

Rem : Wifj let's create seven AVAL. programs

For S=I to? '

Channel |S To Sprite 6+(S*2)

PI$="Aniilt 0,(i,2)<2,2)(3,2)(4,2) ; Label: Move "+Str*(S*2)"+50,7
Amal S|If!$ _

Next S | R : E g
Rem Okayl. now animate it all!

1

Amal On e Direct - : '

|
Since AMAL commands are performed using interrupts, infinite |opos

could be disastrous. So a special counter is automatically kept of tthe
nunber of junpsi in your program, Wen the counter exceeds ten, any
further jumps wll! be totally ignored by the A#... system

NOTE: if you fely on this system and allow your prograns to |oop
continually, ug.i'll waste a great deal of the Armiga' s conputer power,
In practice., itj's rmuch nore effecient to limt yourself to just a
single junp perj VBL. This can be achieved by adding a sinple PAUSE
conmand before each Junp in your program See PAUSE for nore details.
Vari abl es and eXpr essi ons

! Let (assigns a value to a register)

L register=expression TLeel . .

The L instruction assigns a value to an AVAL register. The action is
very simlar to! normal Basic, except that all expressions & e eval uated
strictly from léft to right,, ..

Regi sters are integer variables used to hold the internediate val ues
in your AVAL prograns,, Allowable nunbers range between -32763 to +32768.
There are threeLbasic types of register;

Internal regi isters

Every AMAL program has its own set of 10 internal registers. The
names of these registers start with the letter R followed by one of
the digits fromO to 9 (RO-R9). Internal registers are like the |ocal
variabl es inside an AMOS Basic procedure,, - -

External registers
ticternal registers are rather different because they retain their

val ues between separate AVAL prograns. This allows you to use these
registers to pass informati on between several AMAL routi nes. AMNAL

provides you with up to 26 external registers,, wth names ranging
from RA to RZ. The contents of any internal or external register can

181

oy

be accessed directly from 'your Basi ¢ program using the AHREB function-

Special registers
Special registers & <s a set of three values which determne the
status of youtf object. XY contain the coordinates of your object,, By
chanai ng these; registers you can nove your object around on the

screen. | dmple:

Load "AiiOSJATAsSpr:Ues/F>og_j3prites..abk™ ". Channel 1 To Badb i
Flash OFf : Get Sprite Palette s Bob 1,0,0,1

Amal 1, "Loops Let X=X+1 s Let Y=Y+l ; Pause;; Junp Loop"

Amal On 1 ; Direct

"A' stores the nunber of the image which is displayed by a sprite or
bob. You can alter this value to generate your own animati on sequences
li ke so: 5

Load "All1OS_DATA:Sprites/Frog_Sprites.abk" . Get Sprite Palette'
Flash Off ; Channel 2 To Bob 1 5 Bob 1,300,100, 1

i 1$="Loop; Let A=A+1 ; " .
Mb=MB+"for RO= To 5 ;; Next RO ; Junp Loop" '
Aral 2!j1$
Afld On! 2 i Direct .o ' e ' Y-
Th& For To Nextilop will be explained in nmore detail below It is used

here to sl ow drjffn each change to Bob |I's inage. Wen the "Next" of the
loop is execute™, Al Al. won't continue until a vertical blank has

occurred. Also hote the use of ";" to separate the AVAL instructions -
al t hough a spac¢ " " will serve just as well.
Qperators

AVAL expressions can include all the normal arithmetic operations,
except MR, You! can also use the follow ng |ogical operatoins in your
cal culations: | : . :

& | Logical AND

! ; Logical OR

Note that it's not possible to change the order of evaluation using
brackets " ()" as this would slow down your calculations considerably
and thus reduce. the allowable tine in the interrupt. Type the follow ng
exanpl es '

Load "A(10S DATA: Sprites/Octopus. abk" s Hide

CGet Sprite Palette

Sprite 8,X Muse, Y Muse, 1 ' .
Amal 8,"Loop:: Let X=XM ;' Let Y=YM 5 Pause ; Junp Loop"
Aral On 8

Load "AMDS DATA: Sprites/Octopus. abk" s Hide

Get Sprite Palette

Sprite 8 X Hiuse,,Y Muse., 1

Aval 8,"Ani(n 0, (1,4) (2,4) (3.4) (4,4) ; Loops Let X=XM 3 Let
Y=YM 1 Pause ; Junp Loop"
Afnal On; . -

The above exanples effectively mmc the CHANGE MOUSE conmand. However
LhilSisytytGIm:i.smuchmore?powerfuX<smyollcttne?<A3i Xymovebobs,<7.<stnput&?d
sprites, or even screens using exactly the sane techni que.

i

AL}

1ft!

Making deci sions : 100

If (branch within an AVAL string)

If test Junp L

This instruction allows you to performsinple tests in your AVAL
progranms. |f thi> expression test is -1 (true) the programwll junmp to
label L, otherwise AMAL will imediately progress to the next
instruction. Note that unlike it's equivalent., you're limted to a
single junp opefation after the test.

It's common practice to pad out this instruction with |owercase
commands like "then" or "else". This makes the action of t he comand

rat her nore obvious. Here's an exanpl e; e
| f X>10|O then Junp Label else Let X=X+ . N
"fest " c&n be ai:!iy | ogi cal expression you |ike, and may i ncl ude;

< Noti equal s

< Lesf;, than
> Geater than
= Equgls ,

Exanpl es . -
Load "AflCs. I)ATAsSths/O:topus,,abk" ' o -
CGet Sprite Palette : S S,e -
Sprite $, 130,50, 1 o - : o e
C*="Main; |f X1>100 Junp Test:: " . : ' . - e
C=C+"'llet X=XM " e .
Cr=Cs+"fest: If YMXIOQ Junp Main " _ T
C-=C*+"Let Y=YM Junp Main" b _ : ..

Aral 8,CF ; Amml On : Direct

WARNI NG Don't try to conbine several tests into a single AVAL
expression using "& or "I". Since expressions Are evaluated from |eft
to right, this nill generate an error. Take the expressions
XMOOJYMOO. This is intended to check whether X>100 OR Y>100. In

practice,, the expression will be evaluated in the follow ng order;
X>100 May be TRUE or FALSE . e - 184
Ly OR result with Y : : . :

>10() tCheck if (Y>100j Y)>100) C .
I . . _ .

The result from the above expression will obviously be no relation to
the expected val ue. Technically-ninded users can avoid this problem by
using bool ean al gebra. First assign each test to an single AA...
register like so:

Let RO=X>100: Let R =Y>100 .

Now conbi ne these tests into a single expression usi ng J and & and use
it directly in your If statenent.

If D! R Junp L. ., .

This may look a little crazy., but it works beautifully in practice.
. ! :
|

For To Next (loop within AWL.5

For reg=start To end
Next req] This inplements a standard FOR ..M. XT

: loop which is almpst identical to its
Basi ¢ equival ent. These |oops can be exploited in your prograns to nove
objects in conplex visual patterns,, "reg" may be any normal AVAL
regi ster (RO--R9. or RA-RZ),, However you can't use special registers for
this purpose.

| . .

As with Basic, the register after the Next nust match with the
counter you specified in the For,, otherw se you' |l get an AMAL syntax
error. Also note that the step size is always set to one. Additionally,
it's possible to "nest" any nunber of |oops inside each other. '

Note that each animation channel wll only performa single |oop per
VBL. This synchronizes the effects of your loops with the screen
di splay, and avoids the need to add an explicit Pause conmand before
each Next.

Cenerating an attack wave for a gane

These | opes can; be used to create sonme quite conplex novenent patterns.
The easiest type of notion is in a straight line. This can be generated
using a single for... .Next loop like so;

e¢' Load "AhOS DATA: Sprites/ CGectopus. abk” 5 Get Sprite Palette
Sprite 8,130,601 .
CP=For RO=lI To 320 5 Let X=X+1 ; Next RO" 5 Rem Move sprite o
Amai 8,CF : Amal On 8 s Direct e

You can now expand this program to sweep the object back and forth
across the screen.

Load "Ai(B...SATA?Sprites/ ctopus, ,abk” @ Get Sprite Palette

Sprite 8,130,60,1 o ;
C*="Loop: For RO=I To 320 p Let X=X+l 5 Next RO ;" ’ ... 185

C=C$+"'For R=1 To 320 ; Let X=X-1 5 Next RO ; Junp Loop"
Aral 8,C : Amal On 8 : Drect

The first |loop noves the object fromleft to right, and the second from

right to left. So far the pattern has been restricted to just

hori zontal novenents,, In order to create a realistic attack wave, it's .
necessary to incorporate a vertical conponent to this motion as well.

This can be achieved by enclosing your program with yet another | oop.

Load "AMDSIDATAsSprites/Octopus,,abk” s Get Sprite Palette , .
Sprite 8,130,60,1 : C'=For RI=0 To .10 ;" _ e ',
C$=C$+"For ROsl To 320 ; Let X=X+1 ; Next RO ; "

CP=Cof "Let Y--Y+8 ; "

C$=C3+"For R0= To 320 5 Let X=X-1 ; Next RO ; "

C*=C*+"Let Y=Y+8 ; Next RI"

Anial 8,C$: Ama On 8

The above programs generates a snmooth but quite basic: attack pattern. A
further denmonstration can be found in EXAMPLE™ 14.1 in the NMANUAL
fol der. .

Recording a conpl ex novenent sequence

£l

PLay
PLay path jl

If you' ve? looked at the smpoth attack waves in a nodern arcade gane,
and thought them forever beyond your reach, think again. The ARAL Play
command allows you freely animate your objects through practically any
sequence of novements you can imagine,. It works by playing a preV|oust
defined novenent pattern stored in the AHAL nenory bank.

These patterns are created fromthe A HAL accessory on the AMOS
program di sc. This sinply records a sequence of nouse noverments and
enters themdirectly into the amal nenory bank. Once you've created
your patterns in this way, you can effortlessly assign them to any
object on the screen, reproducing your original patterns perfectly.
Both the speed and direction of your novenent can be changed at any

time from your AMOS Basic program L

The first time AHAL encounters a Play command, it checks the AHAL Y
bank to find the recorded movenent you specified using the "path" '
par anmeter, "path" is sinmply a number ranging from one to the maximum
nunber of patterns in the bank. If a problem crops up during this '
phase, AHALwi 1laborttheplayinstructioncompletely, andwi 11ski p;
to the next |nstruct|on in your ani mation string,,

After the pattern has been initialised,‘ register RO will be |oaded
with the tenpo of the movement. This determnes the time interval
bet ween each individual novement step, All timngs are nmeasured in
units of a 50th of a second. By changing this register within your AVAL.
program you can speed up or slow down your object movenents
accordingly. | . .

Note that each nmovement step is Kadded* to the current coordinates of
your object. So if &n object is subsequently noved using the Sprite or
Bob instructions, it will continue its manoeuvres unaffected, starting
from the new screen position. It's therefore possible to animte dozens
of different objects on the screen using a single sequence of
nmovements. . L : S L

Regi ster R now contains the flag which seta the direction of your
movements. There Are three possible situations:

* RL > 0 Forward el : _ E o

A value of one for R specifies that the nmovement pattern will be ceet -
replayed from start to finish,, in exactly the order it was created
(this is the default).) . : '

* Rl =0 Backwar d * - s R

Many ani mati on sequences require your objects to move back and forth
across the screen in a conplex pattern,, To change direction, sinmply
load R with a zero. Your object will now turn around and execute your

original novement steps in reverse.

* Rl=-1 Exit - . _ :

If a collision has been detected from your AMOS program, you'll need to
stop your object conpletely, and generate an explosion effect,, This can
be acconplished by setting RI to a value of mnus one. AMAL will now

abort the play instruction,, and inmediately junp to the next
instruction in your animation sequence.

186

B it Lty

it}

The clever thing about these registers is that they can be changed
directly from AICs Basic, This lets you control your novement patterns
directly fromwthin your main program There's even a special AMPLAY
instruction to make things easier for you. '

The PLay comand is perfect for controlling the aliens in an arcade

game. In fact, it's the single nost powerful instruction in ANAL.

AHAL (call an AHAL program

ANAL n, a*
AlA n,p :
A HAL n,a* to address The AMAL conmmand assigns an ARAL program
~ to an animation channel. This program can
be taken either froma string in a$ or directly from the A1A bank.

The first version of the instruction |oads your program from the
string a$ and assigns it to channel n. a> can contain any list of AHAL
instructions,, Alternatively you can load your program from a nenory
bank stored in bank nunber 4.

n is the number of an animation channel ranging fromO0 to 63. Each
AMOS channel can be independently assigned to either a bob, a sprite or
a screen. S

Only the first 16 AHAL. prograns can be performed using interrupts. In
order to exceed this linmt you need execute your prograns directly from
Basic using the SYNCHRO command,,

The final version of the AHAL insturction is provided for advanced
users. Instead of noving an actual object,, this sinply copies the
contents of registers X, Y and A into a specific area of nmenmory. You can
now use this information directly in your own Basic routines. It's
therefore possible to exploit the AMA I. systemto animate anything from
a Block to a character. The format is: '

AMAL n,a$ To address L e

"address" nust be EVEN and nust point to safe region of nenory,
preferably in an AMOS string or a nenory bank,, Every time your AVAL
program is executed (50 tinmes per second), the following values w 11 be
witten into this menory area;

Location Ef fect _
Addr ess Bit 0 is set to 1 if the X has chan'ged '
; Bit 1 indicates that Y has been altered
i Bit 2 will be set if the imge -(A has changed since
thelastinterrupt,

Address+2 Is a fcword* containing the latest value of >;
Addr ess+4 Hol ds the current value of Y
Addr ess+6 Stores the value of A

These values can be accessed from your programusing & sinple DEEK,
NOTE; This option totally overrides any previous CHANNEL assignments.

AMAL command=

187

H (Move) Move del taX, deltaY,, steps
A (Anim) Ani(ncycles,, (imge, del ay) (i mge,..del ay) « - 188
L (Let) Let reg=exp o '
J (Juflip) Jump L ' '
I (1F) If exp Junmp L.
For To Next For Reg=start To end ...Next Reg _ : .18.9
PL (PLay) PLay path o
P (Pause) Pause ' _ _ _
AU (AUtotest) AU (list of tests) See the Autotest System 190
X (eXit) SXit Exits from an AUtotest and re-enters the
current Al'l Al.. program
U (Wait) T\ t : Freezes your AHAL program and only
: : executestheAUtotest,,
0 (On) ‘o © Activates the main program after a Wait.
1) (Direct) Di rect Sets the section of the main program
- to be executed after an autotest.

HIAL functions | ' B _ : . . -191
prpa gt R !) . o
= XM Returns the X coordinate of the mouse , e
=YM Returns the Y coordinate of the nouse
=K1 Status of left mouse key (-=!,,. i f pressed,, otherwi se O)
=2 Status of right nouse key
=30 Test right joystick. Result in bit-mp.
=J1 Test left joystick,, See the JOY command.
=Zin) Random number. Returns a random nunber between eees32767

to 32768. This number can be linmted to a specific,

range using the bit-mask n. A l|ogical AND operation

is performed between the bit mask n and the random

number to generate the final result. So setting n to

a value of 255 will ensure that the numbers will be

returned in the range 0 to 255, Since this function has

been optinized for speed, the number returned isn't

totally random |If you need really random nunmbers, you

woul d be better to generate your values using Basic's

RND and then load them into an external AMAL register

with the AMREG function,,
=XH('s, X) Converts a screen x coordinate into a hardware coordinate.. 192
-YH(s,y) Converts a screen y coordinate into hardware forrrat
- XS('s, X) Hardware to screen conversion o
=YS(s, y) Har dware to screen conversion
~BC(n.,s,, e) Check for collisions between bobs,, BC is identical to the

Et i R

equi val ent AMOS Basic BOB COL instruction., It checks bob
number n for collisions between bobs s to e, If a
collision has been detected,, then BC will return a value
of -1, otherwise 0. This instruction may NOT be perfornmed
within an iterrupt. So it's only available when you are
executing your AMAL routines directly from Basic with the
SYNCHROI nstructi OR.,

Thi«r, is squiualent to -the SPRITE . functior:, Li keBC
function, it's only allows in conjuction with the SYNCHRO
instruction.

=V(v) VU-neter. The WU function sanples on& of the sound
channels and returns the intensity of the current voice.
This is a nunber in the range 0-255. You can use this
inforfliation to animate your objects in tine to the nusic.
An exanple of this can be found in EXAMPLE .14.3» Also ses
the VUMETER function from AMOS Basic

Controlling AVAL from Basic

AlIA. ONCFF (start/stop an AIAL program L
AlIAL ON [n]

Once you' ve defined your AIA. programyou need to execute it using the
AHAL ON command. This activates the AVAL system and starts your
prografiis from the first instruction,

AlIA. OM activates all your prograns,, The optional paraneter n allows
you. start just one routine at a tine?

AIA CFF [n] ,

Stops one or all ARAL programs from executing. These prograns are
erased from nmeonry. They can only be restarted by redefining them again
using the AIAL _instruction.

I AVAL FREEZE (tenporarily freeze
' an anmal program
Al AL FREEZE [n]

Stops one or nore AIA. programs for running. Your programs can be
restarted at any tinme using a sinple call to AHAL ON. Note that this
instruction should always be used to stop AVAL before a command such as
DR is executed, otherwise problens with timng can cause visual

m shaps.

SALIREG™ (get the val ue of an
external AHAL register)

r=AHGER(n, [channel]) - " o -,.o.

ATREQn, [channel])=-expression * - - St e

The AIREG function allows you to access the contents of internal and
external AMAL register directly fromwthin your Basic program,

r." is the nunber of the register,, Possible values range fromO0O to 25
with zero representing register RA and twenty-five denoting RZ.

By using the optional "channel" paraneter you can reference any AlA
internal register. In this node "n" ranges between O and 9 representing
RO to RO.

The follow ng ©Xanples shows how it is possible to retrieve a
sprite's current X-position from Basics

193

[

Load »AMOSJ>ATA:Sprites/Octopus.abk” : Get Sprite Palette
Channel 1 To Sprite 8 : Sprite 8,100,.100,,!
At ="Loop: Let RX=X+1; Let X=RX; Pause? Junp Loop"
Aral 1,A* s Amal On ; Curs Of
Do
Locate 0,0

Z=Asc("X")-65 s Rrn Note the use of ASC to get the register
Print ;A eg(Asc("X")-65)
Loop

:!AIIPLAY(controlananimation. _
produced with PL ay) . _ S

Al AL AY tenpo ..direction [start TO end]) - '

Any novenent sequences you' ve produced using the AIA A. comrand are
controlled through the internal registers RO and Rl. Each object will
be assigned it's own unique set of AAA registers. So if you're
animating several objects, you'll often need to load a nunber of these
registers with exactly the sane val ues.

Al'though this can be achieved using the standard AHREG function, it
woul d obviously be nmuch easier if there was a single instruction which
allowed you to change RO and R for a. whole batch of objects at a tine.
That's the purpose of the AMPLAY command. - -

AIPLAY takes the "tenpo" and "direction" of your novenents, and | oads
theminto the registers RO and R in the selected channels.

"tenpo" controls the speed of your object on the screen- It sets a
delay (in 50ths of a second) between each successive nobvenent step,

"direction" changes the direction of the notion. Here's a list of the
various different options.:

Val ue Direction o '

X) Move the selected object in the original novenent directi on.

0 Reverses the notion and noves the object backwards
-1 Aborts novenent pattern and junps to the following
" instruction in your A HAL ani mati on sequence,. '

As a default, this instruction will affect ail current animtion
channels. This can be changed by adding sonme explicit "start" and "end"
points to the command, "start" is the channel nunber of the first
object to be adjusted., "end" holds the channel nunber assigned to the
last object in your list. Mte that either the "tenmpo" or the
"direction" can be onmitted as required. Exanples;;

An pi ay ,0 :; Rem reverse your objects
Amp 1 ay 2, s R S1 ow down you r novermen t pa llerns

Amplay ,-i 3 To 6 s Rem stop novenents on channels 3,4,5 and &

“CHANAN (test A 1AL ani nation)
s'=CHANAN channel)

This is a sinple function which checks the status of an AMAL ani mation
sequence and returns -1 (true) if it's currently active or O if the

174

. 195

animaticon is conplete,, "channel" holds the nunber of the channel to be
tested,

AT e T R

=CHANW (éhecks whet her an obj ect
is still noving)
s=CHANW(channel)

Returns a value of -1 if the object assigned to "channel” is currently
novi ng, otherwi se 0 (false).

This comrmand can be used in conjunction with the AMAL Move
instruction to check whether a novenment sequence has "run out" of
steps. You can now restart the sequence at the new position with an
appropriate novenent string if required,, Exanple:

Load "AMDBI>ATA; ; Sprites/| lankey ...right»abk" s Get Sprite Palette
Sprite 9..i50,50,11

M=fl ove 300, 150, 150; Move -300, - 150, 75"

Amal ?,i%* s Amal On

While Chanmv(9) e .
Wend

Print "Mvenent conplete"

=AJALERR (return the position of an error)
p=AMALERR o _ _ _ '
Returns the position in the current anination string where an error has
occurred. Careful inspection of this string will allow YOU to quickly -. .

correct your m stakes. Exanples

Load "Ail0S_DATA3Sprites/Octopus,abk™

Sprite 8,100,100,1 I | e
A*="L: IF X=300 then Jump L else X=X+1;, Jump L" : '
Amd 8AS$ N S :

This program will generate a syntax error because |IF will be . s

interpreted as the two instructions | and F, To find the position in
the aninmation string of this error, type the following instruction from
the direct w ndow,

Print f1id$(AS$, Aval err, Amal | er +5) - ' . . -

Error messages - _ o . 7196
If you make a nistake in one of your AMAL programs, AMOS will exit back

to Basic with an appropriate error nmessage,, Here's a full list of ths

errors which can be generated by this system along with an explanation

of their nost likely causes.

Bank not reserved;; This error is caused if you attenmpt to call the
PLay instruction without first |oading a bank
containing the nmovenent data into nenory. This should be
created with the AHAL accessory program |If you're not using

N

PLay at all then check that you've correctly separated Any
Pause and Let instructions.

Insturction only valid in Autotest;; You've inadvertently called either
the Direct or the eXit '
instructions from your main A1AL program

[1legal instruction in Autotests Autotest may only be used in
conjunction with a limted range of
AMAL commands. It's not possible to nmove or animate our
objects in any way inside an autotest. So check for erroneous
commands 1i keMove, Ani mor For «, . xt ,

Junp To/Wthin Autotast in animation string: The commands inside an
autotest function é&re
conpletely separate from your main AHAL program So AHAL does
not allow you to junp directly inside an ALitotest procedure
To leave an autotest,, and return to your main AMAL program you
must use either eXit or Direct.

Label already defined in animation strings You' ve attenpted to define
the same l|abel twice in
your' AllJALprogram, ALLANA... 1abelsconsistofjustasingle
CAPI TAL letter. So "Test" and "Total" &e just different
versions of the same label (T). This error is also generated

if you have aCC|dentaIIy separated two |nstruct|ons by a "
(colon). Use a sem-colon instead,, :

Label not defined in animation strings This error is generated when
_ : . you. try to junp to a Iabel
which doesn't currently exist in your animation string

Next without For in animation strings Like it's Basic equival ent each
For command should be matched
by a corresponding Next statement. Check any nested |oops for
an spurious Next command

Syntax error in animation strings You've made a typing mstake in one
of your animation strings. It's easy
to cause this error by accidentally entering an AMAL
instruction in full,, just like its Basic equivalent.

Anlnatlon channels

Anos allows you to execute up to 64 different AVAL prograns
simul taneously. Each program is assigned to a specific animation
channel . .

Only the first 16 channels can be performed using interrupts. If you
need to animate more objects you'll have to turn off the interrupts
using SYNCHRO OFF. You can now execute the AMAL programs step by step
using an explicit call to the SYNCHRO command in yur main program |oop.
As a-default,, all interrupt channels are assigned to the relevant
hardware sorite. . . .

CHANNEL (assign an object to an AMAL channel)

Q-1 AKIK-CL - TOGIb - @c+ =

The CHANNEL command assigns an ani mation channel to a particular s< qq,

e

s

i e

g

[N

e AT -

related "object”. In AA,, you're not restricted to a single channel

per obi ecU Any si'ngle screen object can be safely animated with
several channels if required,. There are various different forms of this
i nstructi on»

Ani mating a conputed sprite

CHANNEL n TO SPRITE s

This assigns sprite nunber s to channel n, As a default, channels 0-7
are automatically allocated to the equival ent hardware sprite, and 8-15
are reserved for the appropriate conputed sprites. .

In order to animate the conputed sprites from 16 onwards, you'll need
to allocate themdirectly to an aninmation channel wth the CHANNEL
comand. As normal , sprite nunbers from8 to 63 specify a conputed
sprite rather than a single hardware sprite. For exanple5

Channel 5 To Sprite 8 ;: Rem Animates Conputed sprite 8 using
. Channel 5,

The XY registers in your A1A program now refer to the hardware _
coordinates of the selected sprite., Sinmilarly the current sprite inmage
is held in register A :

Animating a blitter object

CHANNEL, n TO BGB b

Al locates blitter object b to animation channel n. This object will be
treiltedinanidentica 1l way to the equiva.1 ent hardware sprite. Theon 1y
difference is that registers X and Y now contain the position of your
bob in fcscreen* coordinates. L . . e :

Note that if you've activated screen switching with the DOUBLE. BUFFER
command, this will be automatically used for all bob aninmations.

Mbving a screen ' o I 198.

AMXS Basic allows you to freely position the current screen anywhere on
your TV display,. Normally this is controlled with the SCREEN DI SPLAY
instruction. However, sonetines it's useful to be able to nove the
screen using interr upts.,

CHANNEL n TO SCREEN DI SPLAY d

This sets the channel n to screen nunber d. Screen d can be defined
anywhere in your program You'll only get an error if the screen hasn't
been opened when you start your animation.

The X and Y variables in APl A. now hold the position of your screen in
hardware coordi nates. Register A is *not* used by this option and you
can't animate screens using Anim Qherwise all standard AlAL
instructions can be performed as normal,, So you can easily use this
system to "bounce" the picture aroud the display,, Exanples:

Load Iff "AVDS J)ATA IF'FH Frog_.sc:reen. IFF', 1 e
‘Channel 0 To Screen Display 1

et e L AT A s

A I TP T R e,

Anal O’. "Loops Hove 0, 200,100 ; Hove 0,-200,100 ; Junp Loop"
Al On 0 s Direct

Load Iff "AMOXSDATA; | FF/ Frog_screen,. |FF', 1

Channel 0 To Screen Display 1

Rem Screen can only be displayed at certain positions in the X
Anal 0,"Loops Let X=XM Let Y---YH Pause; Junp Loop"

Amal On s Direct

For a further exanple of this technique, load EXAMPLE: 14,,4,, This
"denmonstrates how the SCREEN DI SPLAY can be used in conjunction with the
nenu commands. to slide the menu screen up and down your display., It's
simlar to the display system found in Magnetic. Scrolls' excellent
series of adventures.

Har dware scrolling

Al t hough hardware scrolling can bé performed using AMOS E<asic's SCREEN
CFFSET command, it's often easiest to animate your screens using AMAL
instead as this generates a much snoother effect. '

CHANNEL n TO SCREEN CFFSET d = : " S

This assigns AVAL program nunmber n to a screen d, for the purpose of
hardware scrolling. The X and Y registers now refer to the section of
the screen which is to be displayed through your TV. Changing these
registers will scroll the visible screen Area around the display.
Here's an exanpl es

Screen pen 0,0 320,500,32, lowres s Rem (pen an extra tall screen
Screen Display O0,, 45, 320, 250

Load Iff "AMOS_DATA: i FF/ Magic..screen. | FF" |

Screen copy 0,0, 0, 320,250 To 0,,0, 251 LI

Screen 0 s Flash Of s (St Palette (0) '

Channel 0 to Screen Cifset. 0

Amal 0,"Loops Let X=XMi28; Let Y=YM 45; Pause; Junp Loop"

Aral On s Wit Key

This program allows you to scroll through the screen using the mouse. -
Try nmoving the nouse in direct node. For a further exanple of hardware
scrolling, see EXAMPLE 14.5

Changi ng the screen size

CHANNEL n TO SCREEN SI ZE s L

This allows you to change the size of a screen using AMAL. s is the
nunber of the screen to be nanipul ated. Registers X and Y now control
the width and height of your screen respectively. They're simlar to
the Wand H paraneters used by the SCREEN DI SPLAY command,, Exanpl es

Load Iff "AfIOSJATA:IFFYMagic:screen.lFF" ,0

Channel 0 to Screen Size 0

Screen display 0,,,320,1 s Remset the screen size to 1
Af=Loop; For RO=0 To 25S ; Let Y=RG; Next R "
A$=A*+"For RO=0 To 254; Let Y=255-R0O-, Next R J Loop"
Aral 0,A% : Anmal On s Direct

Rai nbows

199

R ey

.

CHANNEL n TO RAI NBOW r

This option generates a rainbow effect within an A HAL program As usua
n is the number of an ani mation channel from O to 63.. r is an
identification number of your rainbow (0-3)«

X holds the current BASE of your rainbow. This is the first colour of
your rainbow palette to be displayed,, Changing it will make the rainbow
appear to turn. Y contains the line on the screen at which the rainbow
effect will start,, If you alter this value., the rainbow effect; wil

move up or down. All coordinates are measured in “hardware* format,, .~ . . *

Register A stores the height of your rainbow on the screen. See the
AMOS Basic RAINBOW command fore more details,,

Advanced tehcniques

The AUTOTEST system, e

Normally ail AMAL programs are performed in strict order from start to
finish. Inevitably some commands such as Move and For,»..Next will take
severalsecondstocomplete. Allhoughthiswi 31befineinthevast
majority of cases it may lead to significant delays in the running of
certain programs. Take the following simple prograns

Load "AMOS.._DATA;; Sprites/CQctopus,,abk" s Get Sprite Palette |
Sprite 8,130,50,1

Amal 8,"Loop: Let ROXii-X; Let RI"YH-Y; Hove RO,RI,50; Jump Loop"
Amal On r. Direct.

As you move the nmouse;, the sprite is supposed to follow it around on

the screen. However in practice the response time is quite sluggish,

because the new values of XI and Yi are only entered after the sprite
movement hastotallyfinished, Trymovingthemouseinacircle,The

octopus is completely fooled

Autotest, solves this problem by performng your tests at the start of
every VBL, before continuing with the current program You tests now

occur at regular 1/50 intervals., leading to a practically installtanous
response:
Auto test commands L ' ' '-'ﬂ,n ' 200

The syntax of Autotest is; 5 . °

Altotest (tests) S ST

- "tests" can consist of any of the follow ng AMAL commands
Let reg=exp

This is the standard AVAL. Let instruction, It assigns the result
of an expression to register "reg",. :

Junp | abel

The Junp command junps to another part of the current autotest.
"l abel " is defined using the colon "s" and KHUST* lie inside the

B T acttly . T

3 e e < e

I

P

R

e T Lt Lt

aut ot est brackets,,

< e AT £ T

exit

Leaves the autotest and re-enters the main program from the point
it left off,, :

Wi t

Wait turns off the main AIAL program conpletely, and only executes
the Autotest.

| f
In order to simplify the testing process inside an autotest routine
there's a specially extended version of the AHAL If statement* This
allows you to perform one of three actions dependl ng on the result
of the logical expression "exp".
If exp Jump L (Jumps to another part of the autotest)
If exp Direct L (Chooses part of the prog to be executed after AU) 201
If exp eXit (Leaves autotest) o

O

Restarts the main program after a previous Wait instruction,, This
lets you wait for a specific event such as a mouse click without
wasting processor tinme.

Direct |abel

Direct changes the point at which the main program will be resunmed
afteryourtest. AMALwi 11nowj umpt ot hi spoi ntautomaticallyat
the next vertical blank period. Note that I|abel fctnust* be defined
outside the Autotest brackets.

| nsi de Aut ot est

it

Here's the previous exanple rewitten using the Autotest feature a
Load "AiiOS. DATASsSprites/octopus,,abk" e Y ¢
Sprite 8,130,, 50,1 s Get Sprite Palette -
A$="AUt otest (If ROOXi| Junp Update" o Mo M e \

A*TAS+" I f RLOYPI Junp Update else eXit")
A$"A$+ Updat e:; Let RO=XM Let R.™M1; Direct 11)" s RemEnd of AD
A*=A$ + "l1s Move R-X RL--Y,,20 Wait;" :: RemTry changing 20 to

di fferent . val ues!

| e e

Anad 8,A% s Aral On

The sprite now smoothly -follows your npuse, no matter how fast you nove
it. The action of this programis as follows:

Every 50th of a sec the nouse coordinates &TB tested using the XM and _ _ ‘
YM functions. If they are unchanged since the last test, the Autotest : _ %
is aborted using the eXit command. The main program now resunes '
precisely where it left off.

However if the nouse has been noved, the autotest routine wll

restart the main program again from the begi nning (Iabel It) usi ng the o
new coordinates in Xl and YM respectively, . :

ad

Lt

Timng considerations

e UPDATE EVERY (save sone tine for
' your Basic prograns)
UPDATE EMERY n

Al though nmost ARAL prograns are performed practically instantaneously,
any objects they manipulate need to be explicit;/ drawn on the Amiga's
screen.

The anmount of tinme required for this updating procedure is
unpredi ctable and can vary during the course or your program, This can
lead to an annoying jitter in the novenent patterns of certain objects™

The UPDATE EVERY conmand slows down the updating process so that even
the largest object can be redrawn during a single screen update., This
regul ates the aninmation system and generates delightfully snooth
novenent effects,,

n is the nunber of vertical blank periods between each screen update.
In practice you should start off with a value of two, -and gradually
increase it until novenent is snooth. R '

ne useful side effect of UPDATE EVERY, is to reserve nore tinme for
Basic to execute your programs™ Wth a judicious use of this :
instruction, it's sonetinmes possible to speed up your progranms by as
much as 302, without destroying the snoothness of your animation
sequences, ,

Beating the 16 object limt' - ' . ' ' - 201

SYNCHRO (execute an ANAL program directly)
SYNCHRO [ON/ OFF]

Normal ly AMOS Basic will allow you to execute up to 16 different AMAL
programs at a tinme., This limt is determned by the overall speed of
the Amga's hardware. Each AMAL program takes its own slice of the
available processor time. So if you're using the standard interrupt
system there's only enough time to execute around 16 separate
prograns, S o) . :

The SYNCHRO command allows you to exceed this restriction by
executing your AMAL programs directly from Basic. Instead of using
interrupts, all AMAL programs are now run using a single call to the
SYNCHRO command., Since AMAL programs execute far faster than the
equivalent Basic routines, your animations will still be delightfully
smooth. Butyouwi 11nowabletod« ci dewhenandwhereyur AllAL
routines will be performed in your program

One additional bonus is that you can now include collision detection
commands such as Bob Col or Sprite Col directly in your AMAL routines
These are not available from the interrupt system as they make use of
the Amiga's blitter chip. This would be impossible using iterrupts

£?2 & for G? callin a SVKICIi-iPO yir,t.x -fi rs-~ n<se* d {-. <-i hirfi c%-p-ftho :l. .-, +. s i-yiip-L™* w:, \ h

SYNCHRO OFF. It's imporatnt to do this *before* defining your AMAL
programs, otherwi se you won't be allowed to use channel numbers greater

[

i
H

e

T

than 15 without an error.

Due of the sheer power of the animation system, it's nearly possible

to wite entire arcade ganes conpletely in A1JA.. This | eaves your Basic

program wi th sinple jobs such as managing the hi-score table and
| oadi ng your attack waves from the disc. The results will be
i ndi stingui shabl e from pure machi ne code, A good exanple is Cartoon

Capers, the first commercial ganes release that"s witten entirely in
AMS. ,

A denpnstrati on of SYNCHRO can be found in EXAMPLE 14, 6.

STOS conpati bl e ani mati on conmands

The original STOS Basic included a powerful animation system which
allowed you to nove yoifr sprites in quite conplex patterns using
interrupts. At the tinme, these commands were hailed as a breakthrough™

Al t hough they've now been overshadowed by the AMAL system, they do
provide a sinple introduction to anination on the Ami ga. So AMOS .
provides you with the entire STCS ani mati on system as an extra bonus!-

If you're indenting to convert STOS progranms to AMXG., you'll need to
note the follow ng points:

* Unlike STOS, the npvement patterns in AMOS Basic can be assigned to
any ani mati on channel you like. The Hove conmands can therefore be

used to nove bobs, sprites or screens, using exactly the sane
t echni ques. - - ' '

As a default, all animation channels are assigned to the
equi val ent hardware sprites. In practice you may find it easier to
substitute blitter objects as these are much close to the standard

STCS Basic sprites. Add a sequence of CHANNEL commands to start of
your program like so: _ _ w e :

~ Channel 1 to bob 1
Channel 2 to bob 2

Don't forget to call DOUBLE BUFFER during your initialisation

procedure, otherw se your bobs wll flicker annoyingly when they're
noved. , '

The same channel can be used for both STCS animations and AMAL
prograns., So i.t' s easy to extend you.r prograns onee they' ve been
succesfully converted into AMOS Basic. The order of execution is;

AI1AL

MOVE X
MOVE Y
AM M

MOVE X (move a sprite horizontally)

MOVE X n, nt

Defines a list of horizontal mnovements which will be subsequently
performed on animati on channel nunber r,..

n can range from0 to 15 and refers to an object you have previously

assigned using the CHANNEL command. n$ contains a sequence of

- 203

e LT A Py

s TR Teeemae . TS o s

B

[
e g

Jree——

(]

instructions which together determne both the speed and direction of
your object, These commands are enclosed between brackets and are
entered using the following format;

(speed,step,count)

There's no limt to the number of commands you can include in a single
movementstring, otherthantheamountofavai lableinemory,

"speed" sets a delay in 50ths of a second between each successive
movement step. The speed can vary from 1 (very fast) to 32767
(incredibly slow). . : . e o

"step" specifies the number of pixels the object will be moved during
each operation,, If the step is positive the sprite will move to the
right,, and if it is negative it will move left.

The apparent speed of the object depends on a combination of the
speed and step size. Large displacements coupled with a moderate speed
will move the object quickly but jerkily across the screen.. Simlarly a
smal| step size combined with a high speed will also move the object
rapidly, but the motion will be much smoother,, The fastest speeds can
be obtained with a displacements of about 10 (or -10).

"count" determines the number of times the movement will be repeated,.
Possible values range from 0 to 32767. A count of 0 performs the
fnovernent pattern indefinitely. :

In addition to the above commands, you can also add one of the
following directives at the end of your movement string

The most important of these extensios is the L instruction (for
loop), which jumps back to the start of the string and returns the
entire sequence again from the beginning. Example:

Load "AlI'10S._. DATAsSprits/Octopus,,abk" : Get Sprite Palette
Sprite 1,130,100,1 : Rem Define Sprite 5

Move X |,"(I,5,A0)(l,-5,,60)L" S

Move On o o

The E option allows you to stop your object when it reaches a specific
point on the screen., Change the second to last line in the above
example to; _ .

Move X I|,"(Il,5,30)EL100"

Note that these end-points will only work if the x coordinate of the
object exactly reaches the value you originally designated in the
instruction. If this increment is badly chosen the object will Ieap
past the end-point in a single bound,, and the test will fail,, Example:

Load "Ai 10S_DATA: Sprites/Octopus.abk" s Get Sprite Palette
Channel 1 To Sprite 8 : Channel 2 To Sprite 10

Print At(0,5)+"Loop:irtg OK"

Sprite 8,130,100,1

Move X 1," (1,10,30)(21,,-10,30)1..."

Move On

Print At(0,10)+"I\low press a key" : Wait Key

Sprite 10,140, 150,2 '

Move X 2,"(li.i5,26)L" s Move On 2 :

Print At <Q, 15) +"Ch dear!" ;; Wait Key R

'
!

[

4

5

H

k

;
4

oo e

e,

w

MOVE Y (Move an vertical object)
HOVE Y ngnt

This instruction conplenents the MOVE X conmmand by enabling you to nove
an object vertically along the screen. As before,, n refers to the
nunber of an ani mati on sequence you've allocated using the CHANNEL
commandj, and ranges between 0 and 15.

n$ holds a novenment string in An identical format to HOVE X, Positive
di spl acenments now correspond to a downward motion, and negative val ues
result in an upward novenent. Exanples;

Load "AMDS DATA: Sprites/Octopub.abk"” : Get Sprite Palette
Channel 1 to Sprite 8 : Sprite 8,130,, 10,1
Mve Y 1, "10(1,1,180)1."

Channel 2 To Screen Display O ..
Move Y 2,"(I1,4,25)(1,-4,25) '
Move On s Wit Key

MOVE O\VOfF '(st art/stop novenents)
MOVE QN OFF [n] -

Before your novenment patterns will be executed they need to be
activated using the MOVE ON conmand.

n" refers to the aninmati on sequence you wish to start,, and can range

f romOto 15. If i t' s om tted then all your novernen ts will be activated '

si nul t aneousl y.

HOVE COFF has exactly the opposite effects It stops the rel ecant
noverment sequences in their tracks. : : :

HOVE FREEZE (tenporatily suspend sprite novenents)
HOVE FREEZE [n] - .. e

The MOVE FREEZE conmand tenporarily halts the novenents of one or nore
obj ects on the screen. These objects can be restarted again using '
HOVE ON.

n" is conpletely optional and specifiew the nunber of a single
object to be suspended by this instruction,, -

=MOVON(returenmovementstatus)

x=MOUON(n)

MOVON checks whether a particular object is being noved by the MOVE X
and MOVE Y instructions. It returns =!I if object nis in notion, and O
if it's stationary. Do not confuse this with the MOVE ON conmand. Al so

note that MOVON searches for novenent patterns generated using the MOVE
coii<and5, so it will not detect Any animations generated by rnlAL <«

205

RO A e

* chrg e

e g A iy g

A NP (animte an object)

AM R n, af

Automatically flicks an object through a sequence of images creating a
smooth animation effect on the screen. These animations are performed
50 times a second using interrupts, so they can be executed

simul taneously with your Basic prograns,

"n" is the nunmber of the channel which specifies a sprite or bob to
be animated by this instruction.

"a$" contains a series of instructions which define your animation

sequence. Each operation is split into tw separate components enclosed

between round brackets, ,

"image" is number of the image to be displayed during each frame of
the ani mation, "delay" specifies the length of time this image will be
hied on the screen (in SOths of a see.),, Exanples

Load "AMOS DATA: Sprites/(3ctopus.abk"” s Get Sprite Palette
Channel 1 to Sprite 8 s Sprite 8,200,, 100,, 1 _
Anim 1," (1, .10 (2,10} (3,10) (4,10)" ot
Anim On ; Wit Key - . ’

Just as with the MOVE instruction, there's also an L directive which
enables you to repeat your animations continuously. So just change the
ANIM command in the previous exanple to the follow ng!

Anirn L (1 L0, 10Y (3, 103 {4, 1000

ANIM OV OFF' (start an animation)
ANIN OM OFF [n] I _ '
MAIR K activates a series of animations which have been previously
created using the AW IIl command,, n specifies the number of an individua
animation sequence to be initialised,, If it's omtted, then all current
animation sequences wll be started inmmediately
AMA OFF [n] |

Halts one or more animation sequences started by ANIM ON

_ ANI M FREEZE (freeze an ani mation)
ANI M FREEZE [n] o : ; '

Tenporarily freezes the current animation sequence on the screen,, n
chooses a single animation sequence to be suspended. If it's not
included, all current animations will be affected. They can be
restarted at any time with a sinple call to the ANNM ON instruction,

206

IS BACKGROJND GRAPHI CS _ _ 207

Nowadays, it's not uncommon for an arc&ds gafie to contain hinderds of
different screens. Wth conpaction,, it's possible to crap a single 32
col our screen into about 30k of nmenory. So 100 screens would be the
equi val ent of about 3 Megabytes of data. Imagine how difficult this
would be to fit into a standard A50Q

The classic way of avoiding this restriction, is to construct your
backgrounds out of a set of sinple building blocks. Once these "tiles"
have been created, they can be placed on the screen in any order you
like. So the sane set of tiles can be reused to generate a vast nunber
of potential screens. Each screen is now stored as a sinple list of its
conponents, and requires a tiny fraction of the original nenory,,

In order to exploit this system vyou'll obviously need sone way of
defining your various screen maps. As you might have guessed,, we've
hel pful Iy provided you with a powerful map definer accessory on the
AMXS program disc. Full details can be found in the acconpanying
docunentation file. : o

AMOS Basic al so includes a nunber'of special instructions for draw ng
your tiles on the screen,, These make it easy to generafe the fast
scrolling backgrounds that & e the hallmark of a nodern arcade game™

Icons are separate images which have been especially designed for
produci ng your background screens. Once you've drawn an icon, it's
fixed permanently into place. So you can't nove it to a new position
using the AMAL anination system

Al icons ars stored in their own AMOS nenory bank (M2). This bank is
created using the Sprite definer accessory (on the AMOS Program di sk),
and will be automatically saved along with your Basic prograns.

Li ke Bobs, lcons are displayed using the Armiga's anmazing Slitter
chip. But since lcons are essentally static objects, they are usually
drawn in REPLACE node. Your icons will therefore totally erase any
exi sting graphics at the current screen position.

PASTE | OON (draw an icon) o
PASTE I CON x,y,n
Draws icon number n on the screen at GRAPH C coordi nates 'x?y,. nis the
nunber of the icon which is to be displayed. This nmust have been

previously stored in the |ICON bank. LF e

Icons can be freely positioned anywhere on the screen,, subject to the
normal clipping rules. Exanpl es : .

Load "A 10S..,.DATABI cons/ Nap__i cons. abk” :
Screem pen 0, 320, 256, 32, Lowes s Os 0 s CGet lcon Palette

For X=I To 11 s Paste lcon X*32,0,1 : Next X
FOK- V=1 To Aa Prm<» | < oi. O, Y*32+li a R¢s- 1. e lcon £Be, Y*SS; |
Next Y : !

For X=I To 11 : Paste lcon X*32,223,1 : Next X

Fe

time.

Note that if you're using double buffering., a copy of your icons will
be drawn into both the physical and |ogical screens. Since this is
rather slow, it's comon practive to add a call to AUTQBACK 0 before
drawi ng your icons on the screen,, This restricts straight to the
physi cal screen using SCREEN COCPY,, saving a considerable anount of

For a further exanple, see the MAPVIEW program on the Al OS5 DATA diss:.
This displays a background screen you' ve created using the AMOS Map
Editor.

GET ICON (create an icon) | ; - 2,08
CET ICON [s,,] i,tx,ty TO bx, by | o |

Captures an image from the screen and loads it into icon "i". If this
icon does not presently exist, it will be created for you in bank 2,

This bank will be automatically reserved by the system if required.

i is the nunmber of your icon, starting from 1. tx.ty to bx, by define
the rectangular zone which encloses the selected region.

s determ nes the nunber of the screen which will be used as the
source of your image. If it's omtted, the image will be taken from the
current screen instead,, Exanple; s

Erase 2 : ' :
F*=-Fsel *("#. *",,""., "Load a screen") : If F*="" Then Direct -

. If Exist(f$) Then Load Iff f* 0 Else Direct

',.'- SH=Screen Height : H=SH 32-1 : SWEScreen Wdth : W=SU/32~i

For Y=0to H v
' For X=0to W . :
Get lcon X+Y*WH1, X*32,,Y*32 To X*32+3i , Y*32+3i
: Next X .
“ Next Y _ ; , P
Cls 0 o Ceemer

Do

Loop

GET | CON PALETTE (get icon colours)
GET | CON PALETTE _ ' o,

Grabs the colours of the icon images in bank 2, and |oads them into the
current screen palette,, This commnd is normally used to initialize the
sc:reenafteryou' beloadedsomeiconsfromthedi sc, Exarnple:

Load "A10S..,.DATR Icons/|Map..,;icons,, abk" T S
Get lcon Palette . L : .
Paste Icon 100,100, 1 _ Yy

DEL I CON (deletes icons) .' 209
DEL ICON n[TO nj

PastelconRnd (Sw-1) , Rnd(SH »I) , Rnd/ (H*W +I S 5 oL

(R,

PR TN IR

Del etes one or nore icons from the icon bank, n is the nunber of the .
first icon to be renoved.

(n is the optional nunber of the last icon to be deleted in the Iist,
if it's included all the icons fromfirst to last will be erased one

after anot her.

Wien the final icon in a bank has been deleted, the entire bank wll

be renoved from nenory,, . , Do Meete

MAKE | CON MASK (set col our zero to transparént)

MAKE | CON MASK [n]

Normal |y, any icons you draw on the screen will conpletely replace the
exi sting background. The icon will seem to be displayed in a
rectangular box filled with colour zero.

If you want to avoid this effect and overlay your icons directly over
the current graphics, you'll need to create a *mask* for your icons.
This informs AMOS that colour zero should be treated as transparent.

n is the nunber of the icon to be affected. If it's omtted,, a nask
will be defined for all icons in the bank. See EXAMPLE .151

Screen blocks . . ' T,

allow you to grab part of an inage into menory and paste it anywhere on
the screen.

These instructions are nmainly used for hol di ng tenporary data,
since your blocks cannot be saved along with your Basic prograns.

Bl ocks are especi élly effective in the construction of dial ogue
boxes, as they can be used to save the background areas before
di spl ayi ng your new graphics.

They can also be exploited in puzzle ganes like Split Personalities.
Each block can be loaded with a single section of your inage,, You can
then junble your pictures by rearranging the blocks on the screen with
PUT BLOCK.

GET BLOCK (grab a screen block into nenory)
GET BLOCK n,tx,ty,,w h[smask]

CGET BLOCK grabs a rectangular area in block nunber n. starting at
coordinates tx,ty.

nis the nﬁn‘oer of the block ranging from 1-65535,, tx,, ty set the
coordinates of the top left hand corner of your block. wy hold the
width and height of the block respectively,,

"mask” is a flag which chooses whether a mask will be created for
yourr, ewbiloc: k,)

~ nmask—0 Repl ace node. Wen the block is drawn on the screen,,

Y rimtmn s

it will totally destroy any graphics at that current
posi tion,.

fliask~i Calculates a mask for the block. Colour zero wll now
be treated as if it were transparent,,

PUT BLOCK (copies a previously created
bl ock onto the screen)

PUT BLOCK nl[,, x,Y]
PUT BLOCK n,x,y,plaries[,minterms]

PUT BLOCK copies block nunber n to the current screen,, x,y specify the
position of your new block on the screen. If they are omtted the bl ock
will be redrawn at its original screen coordinates,,

Note that all drawing operations will be clipped to fit into the
current screen,, starting from the nearest 16 pixel boundary.

For a denostration of the BLOCK commands see the routine in EXAMPLE
15.2. We've also provided experienced programmers with a couple of
optional extras. These a.re not needed for the vast najority of
applications, they're only required when you want to achieve weird
special effects on the screen! :

"planes" holds a bit-map which sets the range of colours which wll
be drawn in your block,, The Amiga's screen is divided up into segnents
known as bit-planes. Each plane contains a single bit for every point
on the Anmiga's screen. Wen the Ariga' s hardware displays this point,
it conbines the bits from each plane to calculate the required col our
nunber. Eachbi t i n"planes”" representst hest atus of asi ngle
bit-plane. If it's set to one, then the selected plane will be drawn by
the instruction,, otherwise it will be completely ignored. The first
plane is represented by bit zero,, the second by bit one, etc,

Usual ly, the block will be displayed in all the available bit-planes.,
The corresponds to a bit-pattern of ' | i 1111 :

"fitintermi selects the blitter nbde used to copy your block on the
screen. A full description of the possible drawing nbdes can be found

in the section on SCREEN COPY, The best way to |oearn about these
options is to experinent!

DEL BLOCK (delete a screen bl ock)
CH. BLOCK n
Del etes one or nore blocks and restores the nenory used to AMOS Basic.

DEL BLOCK Erases *all* current bl ocks
DEL BLOCK n Del etes bl ock nunber n.

CGET CBLOCK (save and conpact a screen inage)
CGET BLOCK n, X, YV, SX, Sy

The GET BLOCK conmand saves and conBacts. a rectangul ar area of the
screen. The conpaction system used by this, comrand has been especially

210

g

n_ -

[

16:; MENUS

Burke
L oME

[f you've used the Amga for some time you'll already be famliar with
the idea of menus. Impossible as it seems, AMOS has taken the existing
system and improved it almost beyond recognition.

Menus can be created with up to eight separate levels, and each
individual menu item can be repositioned on the screen at will. Menu
titles can be printed in any combination of colours or styles. You can
also include bobs or icons directly in your menus using an amazing menu
definition language,, _ :

AMOS Basic is squally impressive when it comes to reading, a menu,,
There's a buit-in interrupt-dricen ON MENU command which can
automatically branch to a selected point in your program depending on
the option selected,, Furthermore, any menu option can be accessed
directly from the keyboard using the MENU KEY instruction.

For a demonstration of the terrific effects that can be achieved with
this system, load the program EXAMPLE 16.1. ' _ \ '

Using a menu

AII AMOS menus é&re called up by holding down the right mouse button in
the standard way,, Ones a menu has been activated you can then select an
option directly with the mouse cursor. \When you release the button, the

- option number you have chosen will be returned to your program

Menus can be repositioned by placing the mouse cursor over the top
left corner of an item and holding down the LEFT button, A small box
will now appear on the menu bar which can be dragged across the screen
using the mouse, , _ e

In addition, holding down the SHIFT key will freeze a menu into
place. This allows you explore a menu without selecting any of the
various options. You can also use any of the mouse features such as
slowing or axis selection in conjunction with your menus.

Creatlng a S|wple menu

AMBlmnw can be weMed either directly within your programs or using
a special menu definer included on the AMOS program disc

If you"ve never used menus before, the? sheer variety of the available
ffl enucoA) mandsmayseemali 111eoverwhelming,. Here' sabrief
description of the basic features to provide you with a painless
introduction to AMOS menus.

Settlng the tltle line

The first stage in the creation of a menu is to define the "tille
line". THe title line of a menu can be set using the I1ENUS command. In
its simplest form this has the formats

MENU* (set a menu title)

MENU$(n) =t i t | e* . g

MENU* creates a title line for your menu. Each heading is assigned it's «.
own individual number starting fromone, and increasing fromleft to
right. So the leftmost title is repsresented by a one, the next title

as two, etc. .

The text in "title*" holds the name of the option which will be.
di splayed in your new menu,. Here is a sinple exanple which constructs a
menu |ine consisting of just two titles; ACTION and MOUSE :

Menu*(1)=" Action " . e
Henu*(2) = " Mouse " . - !

Note the space after "Action" = this will separate it from Mouse, the

next menualong. Youmustnowspecifyalistofoptionstahe - 213
associated with each of your new headings. These form a vertical bar

which will drop into place whenever a title is selected with the nouse,,

. I\/ENU$(t,o) (set a menu opti.on)
MENUS$(t ., o) =opti on*

This second form of MENU* defines a set of options which will be -
di splayed in the nenu bar,.

t is the nunber of menu heading which your option will displayed
under, o is the option number you with to install in the menu bar.
Al'l options are nunbered downwards from the top of the nenu,, starting

from one.

The only physical limt to the size of your menu is the amount of
memory, but it's wise to restrict, yourself to less than about 10
options for each title. This will keep the complexity of your menus
downtoanagreeablemini mum '

"option*" holds the name of your new option,, This can consist of any
section of text you like.. For an example, try adding the following
lines to the program above; :

Rem Action menu L e e

Menu*(1,1)=" Quit " | - o

*Rem House nmenu ' ' VR
Menu*(2.,1) =" Arrow" I . e

Menu*(2,2)=" Pointer " . = 5
Menu*(2,3)=" Clock " : . e
Wait Key o e :

This specifies a list of alternatives for the ACTION and the nouse
menus. If you try to run this program as it stands, nothing will
happen. That's because the menus need to be initialised with a call to
the MENU ON command. Enter this thin above program before the Wait Key
instruction. Now run the exanmple and select the nenu items with the
mouse cursor., Remenber to hold down the RIGHT mouse button first!

MENU ON (activate menu)
MENU ON

Activates a nenu defined using the MENU* conmand. The nenu line will

now appear automatically when ths right nouse button is pressed nv the _
user. To start the previous nenu, insert the following line after the ,
definition statenents.)

Menu n ' ‘f._'

Go to the Drect window and play around with the nenus. Select options 214
by pressing the right mouse button : : '

Readi ng a sinple menu

Once you've created your nmenu and activated the AMOS menuing system
you'll want to discover which options have been selected by the user.
This can be acconplished using a sinple form of the CHO CE conmand.

=*CHO CE (read a nenu)
selected:CH(]CE. _ R . . .-’_-

CHO CE returns a value of -1 (true) if the menu has been highlighted by
the user, otherwise 0. It's automatically reset to O after each test.
It's also possible to find the title nunber which has been sel ected
using a second form of this instruction.

heagi nd=CHOI CE(1) - P

"headi ng" now contains the nunber of the "title" which has been
hi ghlighted by the user. Simlarly you can retrieve the actual option
nunber which has been chosen with a parameter of two.

i t em=CHOI CE(2)
Try adding the following lines to the previous exanples

Do

Rem If choice-=-1 can be sinplified to: If choice, as seen,,,.
If choice and choice(i) =l Then Exit

If choice(l)=2 and choice(2)<>0 Then Change Mbuse choi ce(2)
Loop

This changes the shape of the mouse cursor depending on V\hich option
you have chosen from the menu. A full denonstration of these nenu can
be found in the file EXAVPLE 16. 2. '

.

Advanced nenuing features

VW will now cover some of the nore advanced menuing features avail able
fromwithin AMOS Basic. Used properly these AL10S nenus can add a whol e
new di mension to your prograns.

MENU* (create a nenu) . T 215
Ml=MLI*<; i)=nan«al4[.sj®lec -t&d*31I", inac:tiive*"}\7,t>acks|round*!3

Defifies the appearance of each individual menu itemin one of your

A

menus« Unlike normal Amga menus these itens are not restricted to
standard text. They can also include enbedded commands which allow you
to draw bobs., icons or graphics at any point in the menu line,.

Any of the parameters in this instruction m&y be optionally omtted, _
so you can change parts of a nmenu description independently. A value)
of "" in your menu string will ERASE the existing setting. Simlarly
you can retain the original value by including a comma at the
appropriate point., For exanple: L - :

Menu$(l)-" Action ",," s Rem Erase second option
Menu$(2)=" Mouse 2 ",, s Rem Change title without altering
JSo o anyt hing el se.

The position of the menu item within the actual nmenu is indicated using
a list of up to eight paraneters separated by conmas., The general
format iss

cor =

{iten)/(item_,,optiOn.)/(itemoption_,,suboption)...

"normal *" is a string which sets the normal appearance of an item when
it's displayed in the menu, "selected*" changes the effect of
highlighting a menu option with the mouse,, As a default,, selected items

areprintedininversetext,

"inactive*" changes the appearance of an item which has been
deactivated using the MENU | NACTIVE command. If this string is omtted.,

all inactive imes will be displayed in italics, "backgrounds" creates
a background for your menu items when they &e initially drawn.
Generally this will be a bo of some sort created with the internal Bar

or line commads.

For now one, we'll abbreviate these parameters using a standard

not ati on: . el :
setting$=[jselected*]L,inactive*][,background*]

fhe menu hierarchy

The level of an item in the menu is determined by its position in the
menu hierarchy.

i)="Title" LA

Menu* (

Menu* (1, i)="0Option 1" : . .

Menu*(1,2)="0ptian 2" . o oV :
Menu*(i,2,1)="Item .1" S - S -

This defines a simple menu. The structure of a menu is simlar to that
of an a.rr&. Each level of the menu is represented by its own di mension
in the array, and is controlled using a separate version of the MENU*

conmand »

The first level represents the title line which appears at the top of
your menus. It can be set using a command Iikes
Henu$(n) *'title*[setting$li " _ : o C .
"n" now corresponds to the position of the title from the left of the 216

screen, and setting* refers to the three optional strings which define
thegeneral appOAF-Ar~t-K d.A" i .~<s menti. 1/« ™ jo < * p<ihe ((*% e et <> A< 2/ " r ! ir pon @l o*r
of your menus first as this ~dinensions* the &r&y, Al other itens nay
be created in any order you. wi sh.

ETET I R

113

Each title is associated with a list of nmenu options which drop into
view when the nenu is selected,, These form the second |evel of the nenu
structure and & e defined using a second version of the MENU* comnand,,

Henu$(n, opt i oh) = tent[setting$.]
"option" holds the nunber of the item neasured from the top left of the
menu bar. There's no limt to the nunber of options which may he |inked

to a single title, other than the anount of available menory.

Each individual option can in turn be associated with its ow sub
menus up to a total of eight levels,, :

| lenu$(n, option,,sub option)=Itend]setting$]
Once you'"ve created a nmenu it can be expanded or charmed at any point
in your program, Never change the current screen while you a.re creat|ng
a menu as this will lead to an error message. :

See EXAMPLE 16.3 - AT e I

*CHO CE (read nenu)
[t emECHO. | CEC(di mensi on)] - . E A

The CHOICE function checks whether an option has been highlighted on
the current menu. If an item has been selected (down to the |owest
level), CHOICEwi 11returnavalueof-liotherwiseitwi 1lbe0O,After
you've called thisf uncti on, thestat usoft hemenuwillbe
automatically restored to 0 (false). This stops a single nenu, access

from being accidentally detected several tines,

The second form of this command returns the option selected at the
required Ievel.

itefn“CMOICE(dimension) 7

“di mension" indicates the level of the menu which is to be read. As you

m&y recall, a level number of 1 corresponds to the title line of the
menu. Simlartly the levels between 2 and 8 indicate the number of an
icption which has been chosen,, If a menu item has not been sel ected,

"item will be loaded with a value of zero,, For exanple:

Menu*<i)="Menu" : : s / Leel ee
Menu*(1,1)="Option 1" L. e
Menu* (I, 2)="0ption 2" : :
Menu*(1,2,1)"="0ption 2.1" I)
Menu n .
Do

I'f choi ce Then Pri nt ch0| ces 1).,, choic:e(2),, choice(3)
Loop

[f you wanted to inplenent larger menus with this system, your program
woul d need to use a long list of IF,.,.THEM statements to deal with each
and every possibility,, This would cause a small but significant delay

in your programwhile the menus were being read, It would also neke it
very difficult to amend your program later,, Fortunately AMOS Basic

i

T i e A

(KM MENU PROC (automatic menu selection) 217

K MENU PROC proci [,proc2,...]

Each title in your menu can be assigned its own procedure which will be
executed automatically whenever an option is selected by the user,, The
action of this command :.s simlar to the code bel ow

| f Choice

If Choice(i)=l _ : . o
Proci S ' - T
Endi f ' S B Lv -
IfChoice(i)=2 L .o

Endi f ' '

Endif . !) ' . .

There is one crucial difference between the ¢ MENU command and the
above instructions. ON MENU is perforned 50 tines a second using
interrupts and does not affect the overall running of your program
This means that your program can be doing sonmething totally different’
while the menus are being checked by the system, ’ '

Whenever the user selects a nenu item the required procedure wll be

i mredi ately executed with no further ation on the part of your program
Your procedure can then use the CHO CE command to find which option has
been chosen and perform the appropriate action.

After the procedure has concluded, your programw |l be returned to
the instruction following the ON MENU call. Here's an exanples -

Menu$(i)="Action" : Menu$(l, 1)--"Count" s Merudil,2i="uit?
Menu On @ Rem Activate nmenu
On Menu Proc ACTI ON
O Menu On : Rem Activate On Menu conmand
D o
X*=| nkey$; If X$<>"" Then Print X*;: Inc ki
Loop o C S
Procedure ACTI ON o S -\
Shared W B - \
| f Choice(2)=l
Locate 050 ; Print "You typed "jW™ letters" ; WO
Oh Menu On : Rem Initialise menus
Endi f T . : S .
If Choice(2)=2 Then Edit L A
End Proc S o

L 218

There are a couple of inportant points to note about this exanple.

Firstly, see how the on menu sequence is activated using the ON MENU ON
command. This *must* be called after the menu handling procedure has _ _
finished as it's needed to restart the nenuing system A so note the "ol
use of INKEY$ rather than INPUT. The INPUT conmand will halt the menu

checks while you & e entering a line. Al other comands can be used _

wi t hout problems, including WAIT, WAIT VBL and WAIT KEY. For a further ..
exanpl e see EXAMPLE 16.4

ON MENU GOSUB (autonmatic menu sel ection)

ON MENU GOSUB | abel! C label2.. .. .]

e g T RSy

Enters one of a list of subroutines depending on the option which has
been selected by the user,, Once you've called this command and created
your subroutines, the menus will be checked automatically 50 times a

second» .

ey

Note that each title on the nenu line is handled by its own
i ndi vi dual subroutine. This differs fromits AM GA Basic equival ent
which controls the entire nmenu with just a single routine.

After using this command you should activate the nenuing system with
a call to the ON MENU. The nenus mnust be reinitialised in this w&y
before junmping back to the nmain program with RETURN. Al so note that
label #11 AY NOT* be replaced by an expression as the label will only be
eval uated once when the program is run.

ON MENU GOTO (automatic nenu sel ection)
ON MENU GOTO | abel ! [,label?2,...] o e

This command has now been superceded by the nore powerfUI ON MENU PRCC

and ON MENU 60SUB instructions. It's intended to provide compa bil.it y
with prograns witten in STOS Basic, itiHn ever a nenu is selected., the

program will junmp to the appropriate |abel,,
ON MENU OV OFF ([deactivate automatic R L e
_ menu sel ection) -
ON MENU ON : o _ - - T

Activates the automatic menuing system created by the ON MENU

PROC/ GOSUB/ GOTO conmmands. After a sub-routins has been accessed in this
way, the systemw |l be DI SABLED. So it's vital to reactivate the
systemwith ON MENU ON before returning to the main program

N MENU OFF -

This tenporarily freezes the automatic menuing system, It's useful when
your program is executing a procedure which needs to be perforned
without interruptions - such as loading and saving information to the
di sc. The menus can be reactivated using ON MENU N, ' '

ON MENU DEL (dlete the labels used by ON MENU) * 219
& MENU DEL - | N P :

This erases the internal list of l|labels or procedures created by the ON
MENU commands™ You can now redirect your nenus to another part of your

programusing a further call to ON MENU. WARNING Only use this comrand
after you've deactivated the menus with ON MENU OFF.

Keyboard shortcurs

Despite the undoubted appeal of menus, sone users prefer to call up the
Options of v pragrAffl strAigKIl -from: -L &2 U: <My bo*iti-<i.. AlihQwght me?n\-ts -.*r v?
certainly easy for beginners, once you ve famliarised yourself with a
program it can be much faster to call up an option from the keyboard.

Ac

-

AMOS Basic: allows you to assign a keyboard shortcut to any of your
menu items. These keystrokes are interpreted exactly as if the user had
accessed the equivalent option from the menu. They can be used with any

of the AMOS Basic nenuing commands, including ON MENU.

MENU KEY (assign a key to a nenu item

MENU KEY(,,) TO c$. e e :
MENU KEYC, ,) TO scan[, shift] : = o S

This allows you to assign any key to any itemin a previously defined" B

menu. The only restriction is that item you have specified nust be at
the bottom level of our nenu. So you can't use a shortcut to select a
sub nenu as each command nust correspond to a single option in the
nenu, .

c$ is a string containing a single character which is to be assigned
to the nmenu option. Any additional characters in the string will be
ignored. . - e EER C -
Each key on the Amiga's keyboard is assigned its own individual
scancode. By using this code you can assign keys to a menu which have
no Ascii equivalents. Here is a list of scarscodes which can be used
W th your menus.

Scancode Keys

80 — 89 FunctionkeysFLl-F10 ‘e, 'ee-'. . |
95 Hel p . _ oA...\./)
69 Esc ' ' . I

"shift" is an optional bitmap which allows you to check for control key
conbi nations such as ALT+HELP or CONTRCL (0. The format of "shift" is;

Bit Key Tested Not es : S e

Left SH FT

Right SH FT . . i
Caps Lock Either ON or OFF ' S o/
CTRL : ' =

Left ALT

Right AT S

Left AM GA C= key on some keyboards & -

Right AM GA S

~N~No g R, O

Note that if you set more than a single bit in this pattern., you'll
have to press several keys simultaneously to call up your menu item,
Any of these short--cuts can be deactivated by using MEW! KEY with no
parameters. For examples

Menu Key(l,,10) .

Wth the help of MENU KEY command,, adding shortcuts to a menu is a

- trivial operation, so you are strongly recommended to include them as

standard in your programs. Here is an example that checks for the

Amiga's 10 function keys; _ B
Menu* i 1 5=" Fiinction k..~ " - o D, . . A
For A=l To 10 ' *ero o

OPT$=" F"+Str$(A)+" ™

Only one shift key can be tested at a time

i T FE Y TR Th

i

fl enu$(l, A+ CPT$

Menu Key(i,A) To 79+A
Next A :
Menu n
Do .
If Choice Then Print "You pressed function key "; Choice(2)
Loop

Menucont rol coman6s

MENU ON (activate a nenu)

MENU ON [bank] ' ' -

Acfivates a menu which has been previously defined in your program The . °

menu will be displayed when the user next presses the right nouse
button, and the options can be selected in the usual way. If a "bank"

‘nunber is included with the instruction, then the menu will be taken

from the appropriate nenory bank,, See HME! MENU BANK for nore details.

. ’ © MENU CFF (terrporar'ily deactivate a nenu.) .
MENU O F F - ' .
TH s is the opposite of the MENU ON comrand. It tenporarily freezes the

action of the entire menu. The nenu can be restared at any time using
the MENU ON command. , e e . : o e

MENU DEL (del ete one or nmore menu itens)

Erases the selected menu from the Aniga's menory and restores the space
to the rest of your program There are two possible formats.

fi ENU DEL - ' e v

Erases the enitre menu. WARNING This conmand is irrevocabl el

MENUDEL (,j,} : e : o . o,

Del etes just a section of the menu. The (,,,) paraneters contain a list
up to eight values separated by conmmas. These indicate the precise

position of the itemin the menu hierarchy. For exanple;

Menu Del (.t) : Rem Erase title nunber 1
Menu Del (1,2) : Rem Erase option 2 of title i

MENU TO BANK (save the menu definitions
in a menory bank)
MENU TO BANK n
Thi.G ir.etniriion Alloue you *e mw™» .m. entire mé&eoll -t!"-& into memory
bank n. If bank n already exist, you'll get a "bank already reserved"

error.

221

e

Ly

Once you've stored a nenu in this way,, it wll be saved autonmatically
along With your Basic program By storing your nenu definitions in a
nmenory bank, you can reduce the size of your program |istings
significantly. This will free valuable space in the editors nenory, and
will allowyou to wite longer Basic programs using exactly the sane
amount of nmenory. .

BANK T'D MENU (restores a menu definition
saved in a menu bank)

BANK TO MENU n

Sets up a menu definition from menu data stored in bank number n. You
menu will be restored to exactly the same state as it was originally
saved. If the menu is conplex, this process may take a little time- To
aM|vmeyournemenuca11theHENUOMlnstructlon

MENU CALX (recalculate a menu) : '
NENU CALC S .

One of the nicest features of AMOS menus is that they can be easily
changed during the course of a progracn. After you"ve created your

initial definition you can add new items and replace existing options

as well,,

Al your menu items &s automatically repositioned when the nmenu is
selected with the right mouse button,, If your menus are extremely large
this my takek a little time. MENU CALC allows you to perform this
process at the nost appropriate point in your program And avoid
unnecessary and unwanted delays

Note that in order to stop the user calling the menu while it's being
changed., you Are strongly adviced to freeze the menus with MENU OFF at
the start of your procedure. The menu can then be safely restarted
using the MENU ON command after you've finished. Evolving menus Are
particularly useful for adventure games as each location can have its
own individul menu options which can be updated depending on the
pl ayer's actions.

Enbedded menu connands L A

Any menu strlng can optlonally |ncIude a pomerful set of enbedded
commands which allow you to custom ze the appearance of your menus to
an incredible degree;. The list of commands in enclosed between sets of
round brackets () and individual instructions Are separated using
colons ":". For exanple:

Pienu$(i) =" (Locate 10,10 s Ink 1,1) Hello"

Each instruction consists of just two characters which can be in either
upper or lower case. Anything else will be ingnored conpletely. Most
commands al so require you to input one or more conmands., These nunbers
fcmust never* make use of expressions « -these ars > .-+ Qit..>«lex). TK=
comands are listed bel ow

Note: In the syntax the two inportant characters which nake up the

222

ST

.

command are in upper case and highlighted bold.

BOB (draw a bob)

80bn ' ' ' .

The BOB command draws a bob nunber n at the current cursor position.
accound is taken of the hot spot of the bob,, Al coordinates are
measured relative to the top left corner,, Al so note that colour zero

No

is

usually treated as transparent. This may bs changed using the NOVASK

command from AMOS Basic, For exanples

Load "AMOS DATA: Sprites/ Cct opus. abk™
Henu*(1)="(Bob 1) 1":Menu*(Il,1)="(Bob 2) 2"
Menu$(|1 ,2) ="(Bob 3) 3" :

Menu On s Wit Key

|CON (draw an icon)
ICon n

Draws icon $ n at the current cursor position,. Note that unlike bobs,,

colour zero is NOT normally transparent. See the Basic HAKE | CON MASK

for nore detail s*

‘__t. o LOCATE (rmove the graphics cursor)

LCcate x,.y _ _ o
Tis command noves the graphics cursor to coordinates X,y neasured
relative to the top left corner of the menu line,, Note that after an
instruction the graphics cursor wll always be positioned at the bott
right of the object which has just been drawn. These coordinates will
also be used to determine the location of any further itens in your
menu |ike so;

Menu$(l) =" Exénpl e "sMenu$(l,1)="Locate (Lo 50,50) in action "
Menu$(i, 2) ="Guess ny coords"

Menu On @ Wit Key ' - : Loe-,

INK (set Ink and Paper col ours)

Nk n, val ue

The INK conmand assigns the colour indexes to be used for the PEN,

om

PAPER and OUTLINE col ours, Here's a list of the various possibilitiess

Ef f ect
Set text PEN colour .
Set PAPER col our

Set QOUTLI NE col our

WN 1S

223

SR TEET R

LR

SFOMI (set font)

SFont sets the current font to *graphics* font nunber n. This will be
used in all future menu itenms. NOte that you MIST call GET FONTS before

this instruction is executed, otherwise it can only use the two rom
forts. See EXAMPLE 12,3,

SSTYLE (set font style)

This coutnand sets the style of the current’ font to n which is a
bit-pattern in the follow ng format:

Bi t Ef f ect
0 Underl i ne
1 Bol d
2 Italic
LINE (draw a line) 224
Ll ne x,y

The LINE command draws a line from the current cursor position to the
graphi cs coordi nates x,,y,. See EXAMPLE 16. , 6

SLIME (set line pattern)

Sets the line style used in all subsequent LINE conmands to the bit
pallern held in p. Since there is no expession evaluation, this pattern
eshould always be converted into decimal notation before use,, A sinple
denonstration of the possible line styles can be found in EXAMPLE 16.,7,,

BAR (draw a bar)
BAr X,y

This draws a rectangular bar from the current cursor coordinates to
X,y. See EXAMPLE | b''- B,

QUTLINE! (encl ose bar with an outline)

Qutline flag

Draws a border in the current outline colour (ink 3) around all
subsequent bars,, A value of one activates the border and 0 renoves it,,

Rt TrCMRY i e el

The general structure of a nenu procedure is;

Procedure | TEM R _ _ :
| f DREGCR) - - . ' ;-
X=DRE6() sY==DREJ(|) :
... draw the item. ..
Endi f . .
DREG(O -8X ¢ o ; .-
DREG(1) #BY - . e : -
End Proc S

The dimensions of the menu item as displayed on the screen are set
using the coordinates BX and BY. These MJST he loaded into registers DO
and D before |eaving your procedure as they are needed to create the
final menu bar.

Wil e inside your procedure you can perform nost AMOS instructions
i ncludi ng other procedures. But sonme instructions Af& absol utely-
forbidden! If you use these commands,; you won"t get an error nessage
but. your AM (3 Anay crash unexpect edl y!

NEVER change the current screen inside a nenu,

Don't set or reset a screen zone

Avoid using instructions such as VAT,, WAIT KEY, INPUT or |NKEY*
Disc operations Are absolutely forbidden! '
Any error trapping in your procedure wll be ignored.

* F * F

—

. Used with caution,, the PROC command ca.n procedure sone mnind-bl owing -e
effects. For a denonstration,, |oad EXAVPLE 16., 10. -« -

RESERVE (reserve a |local data
i\re& for a procedure)

REserve n . ¢ e

Reserves n bytes of menory for this nenu item. This area can be
accessed fromw thin your menu procedure using the address held in
AREG(i). The data Ares, you have created is common to all the strings in
the current menu object. It can be used to exchange paraneters between
the various procedures called by a menu item -

MENU CALLED (redraw a nenu item continually) . . I .

MENU CALLED(, ,) .

Automatically redraws the selected nmenu item 50 tinmes a second whenever

it's displayed on the screen. It's usually used in conjunction with a

menu procedure to generate animated nenu itenms which change in front cf 227
you.r eyes.

In order to make use of this function, you first need to define a
menu procedure, using the principles outlined above. Then add a call to
this procedure in the required title strings using an enbedded
MENU CALL. W en the user displays the chosen item your procedure wll
be repeatedly accessed by the menuing system

Since your procedure will be called 50 times a second, it should
obviously return back to the nenu as quickly as possible. This will

B T T

in

all ow enough <tine for the rest of the menu to be succesfuily updated. N

Al'so note that your enbedded procedure can safely animte your item
using either bobs or sprites. However, as the menu itens are NOT double
buffered, your bobs m&y flicker slightly on the screen. So it may be
better to use conputed sprites for this purpose instead,, Another
approach is to draw your display with the standard AMOS graphics
commands. An exanple of this can be seen in EXAMPLE 16.11

’

MENU ONH (turns off automatic redraw ng)

MEUN ONCE(s,) e o o

Turns off the automatic updating systenlétarted using the MENU CALLED,

Alternative menu styles ooy

Normally the titles of a menu Are displayed as a horizontal line and
the options are arranged below it in a vertical nmenu bar. |f you. want
to create something a little unusual, you can change the format of each

| evel of your menu using the following three instructions:

MENU LINE (display a nenu
as a horizontal line of itens)
MENU LI NE |evel '
MENU LIWE(,,3 L

Di splays the nmenu options at the requested level in the formof a
horizontal line. This menu line starts from the |eft-hand corner of the
first title am stretches to the bottom right corner of the last,.

MENU LI NE | evel S e T I

Defines the menu style of an entire level of your nenu,. This sould only
becalledduri ngyour <enudefinitions,

Normal 'y one would only use the "level" version for this commnd
Setting individual items to Line and Bar can give bizarre results, but
this my be useful for sonethingi

MENU TLINE (display a menu as a total 1ine) . _ 228
MENU TLINE | evel 3 L |
MENU TLI NE(, ,) _ _uV - S , B
Di splays a section of the menu as a "total line" stretching from the

v&ry left of the screen to the very right, The entire line will be S
drawn even when the rist itemis in the mddle of the screen. : '

"level" is a number ranging from1 to 8 which specifies the part of
the menu to be affected. This is the standard form of the instruction
andchoul dbest-il l.»ddu.~1-r, 9, ,<-,..., -~<»e.... J»Ti,,xi.ti.«r>s«aa<:," i i Krw;i. v>e:i. twi. 11

have no effect.

T R T e

You can al so change the appearance of a nenu after it has. been vrated
using a second formof this command. For exanple:,

Menu Lined, 1) s RemDisplays nenu 1, 1 as a line.

[1BWJ BAR (display a section of the
menu as a bar) :

MENU BAR level | bV | _ .
MENU BAR(..,) o - |

This displays the selected menu itens in the formof a vertical bar.
The width of this bar is automatically set to the dinensions of the
largest itemin your menu. . -

"level" is a nunmber which indicates which part of the current nenu-
definition is to be affected. As a default this option is used for
levels 2 to 8 in your nmenu. Note that this form of the MENU BAR
instruction may only be used during your prograns initialisation phase,,

(,,) is a list of parameters which allow you to change the style of
your menus once they've been installed,, Here's an exanple of Menu Bar
and Menu Tlines ., . A\ " : C

FLAG=0

Do
If Choice and Choice(l)=2 And Choice(2)=l Then ALTER
Loop ' - :

Procedure SETJ1EN -

, Menu$(l)=" Bar Denmo " : Menu*(2)=" Select Below "
Menu*(:L,i)"" | do nothing! "
Menu*(2,1)=" Yes, press on ne!
Menu On

End Proc .

F rocedure ALTER o '
Shared ALTER M,
Menu Del : o R : -
If FLAG=Q Then Menu Bar 1 ;: Hag= Else Menu Tline 1 s Flag=0
SET.J1IEN

End Proc o

MENU | NACTI VE (turn off menu item
MENU | NACTI VE | evel A e
MENU | NACTI VE?, ,) e S

As its name suggests, MENU | NACTI VE deactivates a series of options in
your nmenu. Any subsequent attenpts to select these itens will be
conpletely ignored, "level" allows you to deactivate an entire section
of the fnenu and you can al so deactivate individual menu options with
the paraneters (,,). These indicate the precise position of your item
in the current nmenu hierarchy.

Note that the menu itenms you' ve turned off with the instruction wll
be inmediately replaced by the |INACTIVE* string you specified during

your original menu definition. If this was omitted, al/" unavail able
menuoptionswi 31beshowninitalics,

SETJ1AN . S ' e

229

A e T b i g e

1

MENU ACTI VE (activate a menu itsm

MENU ACTI VE | evel . ; .
MENU ACTI VE*, ,) S

Sinmply reverses the effect of a previous I1HW] | NACTI VE conmand. After
you've called this instruction, the selected options will automaticall;:
redi spl ayed using their original title strings,

Moveabl e nenus

Al 5 nenus can be displayed at any point on the screen, Hen us can be

noved either expiicity by your program or directly by the user.

MENU MOVABLE (activate autonatic menu novenent)
MENU MOVABLE | evel o . e
MENU MOVABLE(, ,) : ' '

Informs the nmenuing system that the nmenu itens at "level" may be noved
directly by the user - this is the default.,

The second form of this comrand allows you to set the status of each
individual itemin the nenu,, The paraneters between the brackets can
indicate any position in the menu hierarchy..

Any nenu m&y be repositioned by noving the nmouse pointer over the
FIRST itemin the menu and pressing the left -nouse button. A

rectangul ar box will now appear around the selected menu item. And this
may be noved to nay point on the current screen. Wen you rel ease the

left button the menu will be redrawn at the new position along with all
the associated menu itens. : : C

Note that this conmmand does not allow you to change the arrangenent

of any itens below this level., If you want to mani pul ate the individual

menu options you'll need to use a sea pa rate MENU | TEM command.. See .
EXAMPLE 16.12 for a denonstration of this system.

MENU STATIC (fix a menu into place) -

MENU STATI C | evel
MENU STATIC(, ,)

Defines the nenu at "level" to be immoveable by the user,, One problem
with noveable nenu, is that the anount of the menory they consune will
change during the course of a program |If your menus &r<s particularly
large, or if nenmory is running tight, this can cause real problens as a
single careless action by the user will abort your programwth an

"out of menory" error. Wth the help of the MENU STATIC conmmand you can
avoid this difficulty conpletely.

MENU | TEM MOUABLE (»="«
. individual nenu options)

230

rit e A

MENU | TEM MOVABLE | evel
MENU | TEH MOVABLE (,,,}

This command is simlar to MENU MOVABLE except that it allows you to
re-arragne the various options in a particular level,, So all the items

in a menu bar may been individually reposi tinned by the user,,

Normally it's illefal to move the items outside the current menu bar,
but this can be overridden using the MENU SEPARATE conmmand.

In order for the menu itens to be nmoveable, the WHOLE! nmenu bar nust

“also be moveable. So if you fix the MENU into palce with MENU STATIC,,

thiscofi mandwi 11havenoeffeet, Additionallyyoucan'tmovethefirst

itemin the menu bar as this will move the entire line. Another side

effect is that moving the last menu item will permanently reduce the

size of your menu bar., There B.re two possible solutions;

t Enclose your entire bar with a rectangular box |ike sos
Menu$(i,i}=,,,"(Bar 40,,100)(Loc 0,0)"

Where MENU$(I,i) is the first item in your current bar.

* Set the last iteminto place with MENU |ITEM STATI C,

MENU | TEM STATIC (static menu item

MENU | TEM STATIC |evel -
MENU | TEM STATIC(, ,) Vv

This command | ocks one or more menu items firmly into place and is the
default setting. : - o :

MENU SEPARATE (separate a list of menu items) : : ' 231

MENU SEPARATE | evel . ,

MENU SEPARATEGC, ,) : . o e

Tells AMOS to separate all the itens in the current |level. Each itemin
your nenu istreated conpletely independently from the previous one. |If
you haven't defined a background string, each itemwll be offset by
two pixels from the one above. This creates an attractive stepped
effect which can be renoved by editing the nenu with the MENU
Accessory,

The optional paraneters to this instruction allow you to split a nenu

bar at any point in the line. Once you ve? separated an itemit wll be
affected by the MENU MOVABLE commands rather than |TEM instructions.

MENU LINKED (link up a set of nenus)

MENU LI NKED | evel . E : Doeee

MENU LI NKEDY(, ,) . : . ' _ I
This links one OP- niof-o menu items together. It's the opposite oT the?

MENU SEPARATE i nstructi on.

. .
B . . P

=fIENJ X (return the graphical X coordinate
of an nenu iten)

x=RENU X,) o - o o

The MENU X function allows you to retrieve the position of a menu item
relative to the previous option on the screen. You can use this
informat ion to inplenment powerful ne ruts such as the one found in
EXAMPLE 16. 13. R

=MENU Y (réturn the graphical Y coordinate
of a nenu iten)

X=NMENU Y(g\ _\}

Returns the Y coordinate of a menu option, note that all coordinates
Are measured relative to the previous item, So this is NOTI a sfandard
screen coor di nat e!

Moving a menu within

Q
o]
=
o
H Q
.
L)
3

t
i

it
1t

MENU BASE (nove the starting point of a menu)
HEWJ BASE X,y
This command noves the starting point of the first level of your menus
to the absolute csreen coordinates x,y. Al subordatine nmenu itens will
be displayed at their curent positions relative to the top of your

flieniuSee EXAMPLE 16, 14 for a denonstration of the MENU BASE comrand in
action.

SET MENU (rmove a nenu) N R 232
SET MENU (,,) TO X,y ! o *, ' o

Sets the coords of the top left corner of a nmenu item These

‘coordinates a. re nmeasured relative to the previous |evel. The starting

point for the entire nenu (coords 0,0) may be set with the MENU BASE
conmand. '

Al the ivels of the nenu below your de m wil also be noved by this
instruction. Their relative positons wll be unchanged. Since x,y can
be negative nunmbers, it's possible to arrange the itens in a nenu bar
in the formof a control panel - see EXAMPLE 16,, 15.

Eisplaying a nmenu at the cursor position

MENU MOUSE (display the nenu under the nouse)

MENU HOUSE ON COFF

L T Y o g £ T g

The MENU MOUSE features autonatically display all

(ifenus starting from

the current position of the nouse cursor,, The nouse coordinates are

added to the MENU BASE to get the final position,

SO it's possible to

place the nenu a fixed distance away from the nouse pointer if

requi red. See EXAMPLE 5§, 16,,

T g e e

[—

w

17s SOUND AND MJSI C _ 233

The Am ga's sound system is capable of generating stereo sound effects
whi ch woul d have been unheard of just a few years ago. The results ;?,re
i mpressive even through your TV speaker,, but when you connect your
Amiga to a Hi-Fi, the sounds can actually shake your room '

As you woul d expect from AMB,, we've cone a long way since the humbe
BEEP command. In fact, we've provided everything you need to
i ncorporate mind-blow ng sound effects in your own ganes. Al the AMOS
sound conmmands are perforned independently of your Basic programs. So
your soundtracks can be played continuously,, w thout affecting the
quality of the game-play in the slightest,, '

-+ Sanples nay be created using any of the available sanmpling cartridges

and can be replayed with a sinple SAMPLAY instruction,, Each sanple can
be output in a variety of speeds, and may be looped repeatedly. It's
even possible to play a sanple as a nusical note, ’

Misi ¢ can be converted over from a separate package such as SOM X,
SOUNDTRACKER or GIC The AMXS Music systemis intelligent and will
automatically stop when a sound is played through the current channel,
thus allowing you to effortlessly conbine both sanples and nusic in the
same sound channel, w thout the risk of unwanted interference effects.

Each song can incorporate up to 256 separate instrunents; the only
l[imt to the nunber of songs is the anount of available menory. In
order to keep the menory overhead down to an absolute minimm all
tunes are built up of a nunber of separate patterns. Once a pattern has
been created, it can be accessed anywhere in your nusic using just a
couple of bytes,, By defining just a few key patterns,, you can therefore
create dozens of different tues w thout running short of nenory.

The best thing about the AMOS nusic system however, is that it's
expandabl e. The entire source code is supplied on the data disc for you
to exam ne or change, So you won't be left out in the cold by any
future devel opnents on the Amiga's nusic scene.

Sinple sound effects

W'l start off with a run down of the built-in sound effects included

in AMOS Basic. These are the AMOS equivalent to the Am ga Basic BEEP.
conmmand. e - A '

BOOM (generate a noise sounding |ike an expl osion)
BOCH
Kapow You're dead! Use BOOM to add the appropriate stereo sound effect
in your ganmes. Traditionally this type of "Wite Noi'se" as been
extrenely difficult on the Am ga, but AMOS uses a clever interrupt

system to create A realistic explosion effect. Exanples;

Boom : Print "You' re DEAD™"

SHOOT (create anociseli keagus f i ring)

Ry e e

SHOOT

This conmand generates a sinple gunshot effect. Like BOOM, SHOOT does
not halt your program in any way,, So if you're firing several
successive shots, you may wish to add a small delay using WAIT.

. Shoot : Wait 6 5 Shoot : Print "You're DEAD!"

BELL (sinple bell sound) _ S : : 234
BELL [f] g

BELL produces a pure tone with frequency f. f sets the pitch of the
note, from1l (very deep) to 96 (yery high).

Sound channel s

The Amiga's hardware can effortlessly play up to four different sounds
simul taneously. This allows you to add attractive harnmonics to your
sound effects.

Each sound can be output through one of four VO CES nunbered from
0 to 3, You can think of these voices as a separate instruments which.
can independently play their own sequence of notes, sanples or nusic.
Al four voices Are internally conbined to generate the final sound you
hear through your speaker system

The AMOS sound instructions will happily play your sounds using any
arrangenment of voices you like. Al AMXS sound conmands use a standard
way of entering your voice settings. Each voice is assigned a o
particular bit in a VOCE paraneter |ike so:

Bit 0 -> Voice O Lo * "
Bit 1 -> Voice 1 o S .«

Bit 2 -+> Voice 2 : T N . . e
Bit 3 -»=> Voice 3 . T . : :

- To activate the required voices, set the appropriate bits to i. Here's
a list of common values to make things a little easier

Value Voice used Effect - S

15 Uses all four voices
9 These voices Are conbined together and

output to the left speaker.

8 g
6 2,4 Pl ayed through the RI GHT speaker.

4 2

2 1
1 0

In order to do justice to the resulting sound effects, you'll al nost

certainly need to connect your Amiga to a H-F system of sone sort,
Host TVs Are just not capable of reproducing the full range of sounds
whi ch can be generated by the Anmiga' s amazing hardware. .

VOLUME (change the sound col une) . : 235

<y

VOLUME Cv,] intensity

VOLUME changes the vol une of the sounds which are to be played through
one or nore sound channels.

"intensity" refers to the |oudness of this sound,, It can nornally
range fromO (silent) to 63 (nmaxinum). As a default, the volune is set
to the sane intensity for all four of the available voices. THe new
volune will be used for all future sound effects,, including nusic.

The v paraneter lets you change the volune of each voice
i ndependently, v now indicates which conbination of voices are to be
regul ated,, This second option is only used by the sound effects. It has
no affect on any nusic you're playing. The voices are selected using a
bit anp in the standard format,, with each bit representing state of a
singl e sound channel. If the bit is set to 1, then the volune of this
voice will be changed, otherwise it will be unaffected,, Exanpl es:

Vol ume S0001,6+% s Boom 2 \Mi t 100
Volume m O ,, 22 : Boom:: Wit 50
Play 40,0: uait 30
Volume 50 : Pay 40,0 -

Sanpl ed sound
If you had to generate all the sound effects you need., directly inside
your computer, you would be faced with An inpossible task. In practive,
it's often nmuch easier to take a real sound from an external source,
such as a tape recorder, and convert it into a list of nunbers which
can be held in your conputer's nenory.

Eacn nunber represents the volune of a particular sanple of the
sound. By rapidly playing these values back through the Amiga's sound
chips, you can recreate a realistic inpression of the original sound.
This technique forns the basis of the sanpled sound effects found in
nost nodern conputer ganes,,

If you want to create your own sanples, you'll be forced to buy a

separate piece of hardware known as a SAMPLER CARTRI DGE. Al though these

cartridges are fun, they're certainly not essentia. AMOS Basic is
perfectly capable of playing any existing sound sanple,, wthout the
need for any expensive add-ons.

Currently there & e hunderds of sound effects available from the
public domain (F)),, covering the vast najority of the effects you'll
need in your games. W've even included a selection of useful sanples
on the AMOS data disc for you to experiment with.

SAM PLAY (play a sound sanple ffom
the AMOS sanpl e bank)

SAM PLAY s . CEE

SAM PLAY v, s : '
SAM PLAY vss, f The SAMP PLAY instruction plays a sanpled sound
strai ght through your |oudspeaker system All

sanples are nornmally stored in menmory bank nunber 5, but this nay be
fris~Hly ch*ingsd u”ing the ~"AM k&R command a C

s is the nunber of the sanple bank which is to be played,, There's no

236

A T g e T ST

-

[imt of the sanples you can store in a bank other than the avail abl e

menmory. |f you want t
you'll need to incorp
can be found towards

v is a bit-map cont
usual, there's one b

0 use your own sanples with this instruction;,
orate theminto an AMOS nenory bank,. Full details
the end of this section.

aining a list of voices your sanple will use. As
t for each possible voice. To play your sanples

through the required voice, sinply set the relevant bit to 1.

f holds the playback speed of your sanple,, neasured in hertz,, This

speci fies the nunber

Typi cal sanpl e speeds
to 10000 for recognis
rate, you can freely

of sanples which Are to be played each second,,
range from 4000, for noises such as expl osions;,
abl e speech effects,, By changing the playback
adjust the pitch of your sound over a |arge range,,

So a single sanmple can be used to generate dozens of different sounds.

Exanpl es

Load "AMOS DATA; Sanpl es/ Sanpl e_, Denv, , abk" e - \ "

For S=I To 11
Locate 0,0
Sam Play S
Locate 0,24

Next S

VWit Key

Sam Play 1,11

VWit key

i ? "Playing sanple ":S
sCent re "<Ht a key to continue)" sWiit Key :dine

; Wit 5 s Sam Play 2,11

Sam Play 1,1,2000 ' ,° . - . .

Wit Key
- Sam Play 1,1,

15000 - S

A further denonstration of this conﬁand can be found in EXAMPLE 17.1

SAM BANK (change the current bank) , 4 ;_

SAM BANK n

Assigns a new nenory bank to be used for your sanples,, Al future

SAM PLAY instructions
bank.

It's possible to ex

will now take their sounds directly from this

ploit this feature to hold several conplete sets

of sanpl es al ongi de each other. You can then between these sanples at

any time, with just a

sinple call to the SAM BANK.

SAM RAW (play a sanple from menory)

SAM RAW voi ce, addr ess

, l engt h, frequency

Plays a raw sanple stored anywhere in the Amga's nenory, "voice" is a
bit-pattern in standard format which specifies the list of voices your

sanple is to use. Eac

h bit in the pattern selects a single channel to

be played (see sound channel s).

address of your sanple. Normally, this will refer

"address" holds the
to the inside of an existing AMOS nenmory bank, "length" contains the
length of the sanmple you wish to play,, "frequency" indicates the sanmple .

speed to be used far
m&y be very different
recor ded.

tho playback fin sanples per second or Hz). This
to the rate at which the sanple was originally

II.I /.!

SAM RAW lets you play standard Am ga sanples straight through your
| oudspeaker, without the need to create a special memory bank (see
Creating a sample bank)., It's now your responsibility to manage your
sanples in nenory,, and enter the sanple parameters by hand,, SAM RAW is
great for browsing through files from your disc collection. Use B 104D
to hold a file in a bank and then use SAPl RAW to play the data,, Wth
luck you should come across some interesting sounds. Exanples:

- Reserve As Work 10,55000
L Bl oad "Sanpl es/ Sampl es. abk",start(i Q) -
. Sam Raw 15, start (10, |ength(10}, 10000 [«" "'

SAN LOOP (repeat a sanple) - o

SAMP LOOP ON/ OFF

The SAM LOOP directive informs AICS Basic that all subsequent sanples
are to be repeated continuously. Exanmples:
Load " ANDSJ}ATAsSan'pI es/SampI edeno. , abk"
Sam Loop On Y :
For S=i Toll
Locate 0,0 : Print "Playing sanple ";;S
Sam Play S

Locate 0,24 s Centre "<Hit a key to continued-" s\ait Key sCline

Next S
Sam Loop Off

This looping effect can be deactivated with a sinple call to the
SAM LOOP OFF command.

Creating asarrple bank T S

If you're |ndent|ng to play your own sanples using SAM PLAY, you'll

first need to load them into a memory bank. This can be achleved with =

the SAMMAKER program supplied on the AMOS data disc. - _ x

,, On start-up, SAMMAKER presents you vvith a standard AMOS file
selector. Enter the filename of the first sanple to be stored in your
new bank, and press RETURN. |f AMOS can't find the sanpling rate,,

you'll be asked to enter it directly. It doesn't really matter if you
make a mstake at this point, as you can safely replay your sanples at
any speed you I|ike. _) v

After a short delay, you'll be prompted for the next sanple to be
installed into the bank. Wen you've reached the end of your sanples;,
type SAVE at the file selector to save your sanples onto the disc.
You'll be automatically pronpted for the destination filename of your
new bank. This can now be entered into AMOS Basic using the LOAD
command |ike so:

Load "Sample.abk"
Load "Sample.abk" ,6 % Ram Loads safliple into bank U6,

The AMOS nusic syst em allows you to easily add an attractive backing
track to your games. Misic can be created from a variety of sources,,

<)

238

T TTeA A o

including 6MC, SOUNTRACKER or SONI X

In order to convert these musics into the special A108 format,, you'l
need to use one of the translation programs included on the AMOS data
disc. GMC music should have been saved using the SAME DATA icon,, as
this copies both the music and the instrument definitions into a single
large data file.

MUSIC (play a piece of nmusic) '
MUSI C n . ', _' - o .
The AMOS MUSIC command starts a piece of music from the music bank

(S3). This music will be played independently of your Basic program
wi thout affecting it in the slightest.

Mrnwllmit'spossibletostoresevaralcompleteaHangémentsinthe

same bank. Each composition is assigned its own individual music
number. The only exception to this rule is music created by GMC, which
only allows you to place one song in the bank at a time., Example;

Load "flUSIC/ Husicdenmo. abk" .
Music i _ o : B

The AMOS nusic, system is intelligent,, and will automatically suspend
your music for the duration of any subsequent sound effects on the
current channel. When the sound has finished, your tune will be
restarted from its' previous position. Up to three separate tunes can be
started at a time. Each new nusic command stops the current song,, and
pushes its status onto a stack. Once the song has concluded, the old
music will commence from where it left off

MUSI C STOP (stop a sihgle section'of musi c¢)
‘MUSI C STOP E oo

Halts the current piece of music. If another nusic is active, it wll
be restarted imediately,,

. MUSI C OFF (turn off all music)
MUSI C OFF ' : B S
THe MUSIC OFF command deactivates your music conpletély. In order to

restart it, you'll need to execute your original series of MISIC
instructions again from scratch. -

TEMPO (change the speed of a sample of music)
TEMPO s .

TEMP modifies the speed of any tune which is currently being played
with the MUSIC command, s is the new speed, and c«n range from .1 (M3ry
slow) to 100 (ver.y fast). Not all instruments are capable of playing at
this maxi mum speed, however,, The practical linit is closer to 50. For a

239

R b T T

!

denonstration, place the AMOXS data disc into the current drive and
type;

Load "A I8 J)ATASF usic/!ius: i cdeno, . abk"
Misic 1

Tenmpo 35

Tempo 5

Mote that nusic created with GVC often contains |abels which set the

tenmpo directly inside the arrangenent. These labels will override the
tenmpo settings within AMOS Basic. So it's not advisable to use themin
your own nusi c, e .) _

i"ivQUHE (set the volune of a piece of rrusic')

MVOLUME n

Changes the volunme of the entire piece of nusic to intensity n (0-63),.

VO CE (activate one or nore Vvoices '
_ of a piece of nusic) o
VA CE nask _ _ o /

Activates one or nore voices of the nusic independently. Usually each
voice will contain its own separate melody which will conbined through
your speakers to generate the eventual nusic,

"mask" is a bit mask in the normal AMOS format which specifies which
voi ces you wish to play,, Each bit represents the state of one voice in
the music. If it's set to 1, the voice will be played, otherw se it
will be totally unused. :

Load "AMS ..DATA !1usic/i lusi cdeno, abk"

Music 3 _ -

For V=0 To 15 : o "o
Locate 0,0 : Print "Voice ";V : Lo

Voi ce V

Wit 100 N d.o -

Next V e '

D rect :

Voice #:0001 : Rem Activate voice O

Voi ce X0010 : Rem N 1 .. CoL

Voi ce £1001 : Rem *.. ~3and 0 . '*
Voice SI H s Rem . | ' D ;

VUM ETER(volumemeter)
s=VUMETER(v)

The VUMETER function tests voice v and returns the volume of the
current note which is being played by your nusic, s is an intensity

val ue between 0 and 63. v is the nunber of a single voice to be checked
(0-3).

LWAin0O+hisS-fun*x+i.* n yonaw@aarmrmULyhlrsphrdtfcZ7»>t QIlt.e?2t Ugp:!l £2C£0T
musi ¢! Load EXAMPLE |17»2 for a denonstration™

240

crmna

' e e

Lt

Mote there's also an ALIAL version of this intruction which allows you
to create realtine VU nmeters using interrupts,. See the section on the
VU comniand for nore inforntation,,

Playing a note

PLAY (play a note)
PLAY [voice,] pitch,delay

Plays a single note through the |oudspeaker of your TV or Hi-Fi.
"pitch" setst hetoneafthissound, ranginafromO(lowto96{high).
Rat her than just being an arbitrary number, each pitch is associated
with one of the notes (A ,B,CDEFQ., This can be seen from the
followi ng table. ' : '

Cct ave

o 1 2 3 4 5 6 7

Not e P tch

C 1 13 2% 37 49 61 /. 8

CH » 14 26 38 50 62 74 86

D v 15 27 39 51 63 75 87 C
m 4 16 28 40 52 64 76 88 i s
. E 5 17 29 41 53 65 77 89 o
F 6 18 30 42 54 66 78 90

FH 7 19 31 43 55 67 79 91

6 8 20 " 44 56 68 80 92

M 9 21 5 45 57 69 8L 93

A 10 .. 34 46 58 70 82 94

AVI 11 23 35 47 59 71 83 95

B 12 24 36 48 60 72 84 96

It should be apparent that the notes go up in a cycle of 12,, This cycle 241
is known as an octave..

The optional voice paranmeter allows you to play your notes through
any conbination of the Amiga' s four voices. As usutal it's a bit-map in
the formats :

Bit Voice
0 _ _ Setting a bit to a value of 1 plays the
i rel evant voice, "delay" sets the length
2 of the pause between the play command and
« 3 T the next Basic instruction. This allows
' you to play each note before preceding
the next one. ' '

S WIN R, O

A delay of zero starts a note and inmediately junps to the next Basic:
instruction,, By playing several notes after another,, you can easily
generate sone attractive harnonic effects. Exanples:

Play 1,40,0 : Play 2.50.0 _ S
Vit Key .

Play 1,40,15 : Play 2,50,15

Do . Lo>T e
T=Rnd(96) : V=Rnd(15) : Play VT.,3 = :/

Loop .i . o

[+]

*

PLAY is not limted to purs notes incidentally.. It's also possible to
assign conplex waveforns to the sound generator using the powerful WAVE
and NO SE conmmands.

Waveforms and envel opes

SET WAVE (define a waveforn
SET WAVE wave, shape* : S . S

The SET WAVE instruction provides you with the ability to define your
very own instruments for use with the AMOS Basic PLAY instruction. The
sound of yur instrunent depends on the shape of a waveform held in the
Amga's menory. This fornms a tenplate which is repeated to produce your
final note. :

"wave" is the nunmber of the waveform you wi sh to define. Allowable
wave nunbers start from 2 onwards. That's because waves zero and 1 are
already installed. Wave zero holds a random noise pattern for producing
expl osion effects. Wave one is a snooth sine wave and generates the -
pure tones used by the standard PLAY instruction., :

The shapes of your waveform & e set using a list of 256 nunbers which
are entered using the SHAPE$ paraneter. Now |look at the uppest diagram
in the AMOS4.PIC (file included with this manual packet).

< picture AMDS4. PIC, the uppest diagram >

Each nunber represents the intensity of an individual section of the
waveform This is equivalent to the height of just one point in the
di agram Possible values for intensity range from-128 to 127. Since
AMDS strings are only capabl e of hol ding ~positive* nunbers (0-255),, .;
you'll need to convert your negative values into a special internal
format before use. The required value can be calculated by sinply
adding 256 to the negative numbers in your list,,

Here's a program which demonstrates how the triangular wave in the
previ ous diagram could be created in AMOS Basic

Sg=n " S S

For 1=-128 To 127 - - - e
X=I : 1f X<0 Then Add X256 e
S*=S$+Chr $(X) _ ' " .

Next | -
Set Wave 2, S '

Before playing your waveform you have to tell AMOS Basic which channels
are to be assigned to your wave. This can be achieved using the WAVE
command. Add the following line to the previous routine

Wave 2 To IS s For 3=10 To 60 s Play S,10 :: Next S '

The Best way to reproduce the effect of a real instrument is to conbine
several SINE waves together. An exanple of one of these sine waves can
be seen in the picture AMDS4. PIC

<pictu'reAI 08 4. PIC, the diagramin the mddl e > _

Addi ng several of these waves together, with different sizes and

© 242

separate starting points, produces waves in the «followng patfern:
< picture AHDSA.,AC, the |owest diagram >

This generates the snmooth harnmoni cs needed for your notes,, Here's an
exanpl e: '

SHAPE$N'"' " 5 Degr ee _
For S=0 To 255 *

V=Int ((Sin(S)/2+SI N(S*2+45)/ 4) *128) +127

SHAPE$= SHAPES+Chr $(V) - i
Next S . -
Set VWave 2, SHAPE* : Wave 2 to 15 . !
For W=10 to 60 s Play hi, 10 : Next N

WAVE (assign a wave to one or nore sound channel s)
VWAVE w To Vv : I

WAVE assigns wave nunber w to one or nmore sound channels, v contains a
bit™mp in the standard format. If a bit in the pattern is set to 1
then the approrpriate voices are used by PLAY., otherwise they will be
conpl etely unaffected.

As a default, wave zero is reserved for the NO SE channel, and wave

one contains a sine wave. Here &e some exanples: o
Wave 0 To £0001 e . R
Play 1,40,0 S e _ o o

Wave 0 To £1100 . , - -~ o : S

Play 20,10 A
Vave 1 To £1111
Play 60,0 b

-

NO SE (assign a noise wave to a channel)
NO SE TO voi ces s S

Applies a white noise effect (wave 0) to the selected voices,, Load
EXAMPLE .17,3 for a denobnstrati on. :

"voices" is a standard bit pat"tern. The fTirst four bits represent the
four possible voices, starting from zero,. NO SE is equivalent to the
command;

Wave O To voices < e ' .
Exanpl ess ' o T

Noi se To 15 _ _ _

Play 60,0 : o e

Pl a.y 30,0 . . . ' L[] o;]

CH. WAVE (delete a wave) =
DEL USAUE n - ' '

Del etes a wave which has previously been defined using SET WAVE,, n is

e A P A g T

the nunmber of the wave, and starts at 2. It's inpossible to delete the

built-in NOSE ans SINE waves using this instruction,, After the wave

has been erased, all voices will be reset to the standard SINE wave -
(default).

SAMPLE (assign a sanple to a wave)
SAMPLE n TO voi ces : - o ' .

This is the nost powerful cersion of all the wave commands. |t assigns
a sanple stored in the sanple bank to the current wave. Play will now,
take an instrument straight from the sanple bank,

Load "Samples/sample!, abk" ee. ees - ete Mo, , 245 .
Sanple 1 To 15 . . T L .
For 1=20 To SO o S , :

Play | ., 50 . : . .

Next 1 o ' . T -l

As usual "voices" allows you to select a range of voices to be set by
the instruction. It's a standard bit-map;; Bit O == Voice 0 etc...

Mtels The range of notes that a sanple can be played with, depends
on its original recording rate,, If a no tois too high, AH G5 nay not be
able to play it at all. The acceptable range varies froma sanple to
sanple,, but it's usually between 10 and 50,,

SET ENVEL (create a volume envel ope) ceellee
SET ENVEL wave, phase TO duration.volume oles ee

The SET ENVEL command snoothly changes the volune of a note while it's
being played. In the real world, sounds don't just sprint into

exi stence fully formed. They tend to evolve over a period of tine,
according to a pattern known as the volume envel ope. The shape of this
envel ope varies depending on the type of instrunent you are playing. A
typical exanple of one of these envelopes is shown in the picture
AMDSS. PI C. 0 '

< picture AMOS5.PIC >

The sound is split, up into four phases? Attack decay., sustain and * o

rel ease. AJI(S Easic allows you to define your envelopes using up to . 246
seven separate steps. Each step represents a steady change in the :
volume of the current note,, . .

"wave" is a nunber of the waveform which will be affected by this
instruction. It's possible to use any waveform you like for this
purpose, including the built-in NO SE and SINE generators

B

"phase" holds the nunber of the partlcul ar phase which is to be
defined, ranging fromO to 6,

"duration" specifies the length of the current step in units of a
50th of a second™ This deterni nes the apparent speed of the volune
change to be generated in this phase,, : - >

"vol ume" specifies the volune which is to be reached by the end of .
this phase. Al owable volume levels range from 0-63,, :

It's inportant to understand that this volunme is relative to the
intensity you' ve previously st with the VOLUVE command. So even if the
note is quiet,, the shape of the envelope will be perfectly reserved.
Now for sone exanpl es! : : - B

Set Envel 1,0 To 200,63 : Rem Sets the 1st step.
Play 40,0 - '

As you can hear, the volume of your sound starts from zero, and
increases to a maximum intensity during the length of the note. Now _
let's try defining something a little nore conplicated,, e _)

Set Envel 1,0 To 15, 60

Play 40,0 s Wit Key ,

Set Envel 1,1 To 1,50 , ,

Play 40,0 s Wit Key Toe _
Se tEnvell, 2T ol0,50 " " e o e -
Play 40,0 : Wit Key o, ' '

Set Envel 1,3 To 50,0 . [/~

Play 40,0 '

Finally, here's an exanple of a NO SE envel ope:

Noi se To 15 - _ L et et
Set envel 0,0 To 1000, 30 S, L _, :

Play 40,0 S . \. - L

Wit key- S ' '

Misic Of L

Don't confuse waves and envel opes. A wave sets the frequléncy conponent s
of your notes, whereas an envel ope sinply changes their vol unme
according to a set pattern. . o ! '

Speech

Your Amiga is supplied with a powerful speech synthesizer program which
CAP, be found on the standard Workbench disc, Wth the help of this
routine, your AMOS prograns can be nmade to speak. Speech is especially
userful in education, as many yound people will respond far better to
the spoken word than to boring text. ¢ o -

One word of caution though. Since the narrator package is independent
of AMOS Basic, we can't attest to its absolute reliability. You're
unlikely to encounter any serious problems, but it's well worth
treating it with a littlle care.

SAY (speak a phrase) .--_:.._:; o, 247
SAY t*G, node;i
The SAY command is incredibly easy to use. Enter your text in normal
Engli sh, concluding your phrase with a punctuation mark such as full

stop. SAY will now translate your words into an internal format and) =
speak them directly through your |oudspeaker,, Exanple:

Say "AMXS Basic can really speak"

The first time you use this instruction,, the narrator ..device wll
automatically be loaded fromdsc:,. So it's vital to ensure that an

o m s aghe L

AN

appropriate disc is placed in the current drive before using this
system, as otherwise you may get an Intuition style requester box,

" "

mode" toggel es between two separate speech modes. As a default, your
program will wait for the duration of the speech,, and any music or
sound effects will be temporarily suspended. Setting "mode" to a value
of oneac. tivatesmullitaskingsystemwhichallowsyoutooutputyaur
speech whilst AMOS is executing your program Inevitably,, this wil

sl ow down your basic routines Considerably, To return your speech back
to normal, set mode to zero,,

If the narrator system cannot understand what you s.rB attempting to
speak you won't get an error message]., but the command will be
automatically aborted. Also note that the narrator can occasionally get
slightly confused with very short sentences. Sometimes the remainder of
the previous phrase is tagged to the end of the current voice. The
problem can be solved by simply adding a list of spaces to the end of

"

your text. These will wipe out the unwanted speech data. o e

SET TALK (set speech effects) - o\
SET TALK sex,,node., pi tch,, rate

This allows you to change the type of voice which will be used by the
SAY command, "sex" chooses between a male (0) or female (.1). In al
honesty, it's not a particularly realistic rendition. Better effects
can be created by simply increasing the frequency of the voice using
the pitch parameter. : ' ' '

" "

mode" adds a strange rhythmc pattern to the voice. This can be
activated by setting "mode" to a value of 1.

"pitch" changes the frequency of the voice,, from 65 to 320.
"rate" specifies the speed,, measured in the words per m'nute (40-400),,

Any of the above parameters can be omtted if required. Providing you
keep the commas in their normal positions,, you can change Any set of
options independently.

Filter effects

LED (activate a high pass filter/
change power |ed)

LED ON/ OFF S

The LED command has two conmpletely separate actions,, Not only does it
toggle the POWER led on your Am ga's console (in KickStart versions
1.3 just makes the led a little darker)., but it also controls a specia
high pass filter. : :

The filter changes the way high frequency sounds && treated by the
system Normally,, these sounds are filtered out so as to avoid the risk
of unwanted distorion effects. Untn'tun*ieiy, -this robs many percussion
instruments of their tinbre,, By turning off the filter, you can
recapture the essential quality of many instrunments.

248

e g AV

s T SN

F’*’"H'"M&' - —

- 18: THE KEYBOARD e

AMDS Basic provides you with dozens of useful keyboard commands,, These
can be used in anything from an Arcade game to an Adventure™ It's, even
possible to write a fully fledged wordp.rocessor entirely in AMOS Basi c!

=INKEY$ (function to get a keypress)
k* =1 NKEY$

This function checks whether the user has pressed a key., and returns
its value in the string !<

Mte the |MKEY$ command doesn't wait your input in any way,, |f the
user hasn't entered a character, INKEY* will sinply return an enpty

string .

IMKEY$ is only capable of reading keys which return a specific Asci
character from the keyboard. Ascii is a standard code used to represent
ail the characters which can be printed on the screen,,

[t's important to realise that some keys,, |ike HELP button or the
«function keys,, use a rather different format,, If INKEY$ detects such a
key, i twi 1lretu. rnac: haracterwi thavalueofiero(CHR$(())), Youcan
now find the internal scan code of this key using a separate SCAM CODE
function.

=SCANCODE (input the scancode of the |ast
* key input wth | MKEY*)
s=SCANCODE . _ R T
SCANCCDE returns the internal scancode of a key which has previously
en tered using the | NKEY$ f unction » This a 11 ows yau to c.heck f oa" keys

which do not produce a character from the keyboard, such as HELP or
TAB. Type the following small exanples

Wiile. K$~"" L
Kislnkers : o
Veénd

I f Asc(K*)-=0 Then Print "You pressed a key with no ASCI| Code"

Print "The Scancode |s"; Scancode
K*xll Bt . .
Loop

Do

=KEY STATE (test whether an individua
key has been pressed)

t AKEY STATE(S)

Check if a specific button has been pressed on the Amiga's keyboard, s
is the internal scancode of the key you want to check. If this key is
currently being depressed then KEY state will return a value of true
(-1), otherwise the result will be false (0). '

249

250

¢ o i = e - r L e e

s

=KEY SHI FT (return the status of
the shift keys) '

keys=KEY SH FT

KEY SH FT returns the current status of the various control keys,, These
keys such as SH FT or Alt cannot be detected using the standard INKYf-
or SCANCODE system But you can easily test for any conbination of
control keys with just a single call to the KEY SH FT function,, "keys"
is a hit map in the following fornmat; .
\V/ ' - .
Bit Key Tested " Notes o -

Left SHFT . S ,
Ri ght SHIFT B
Caps Lock Either ON or COFF

CTRL o _ _

Left ALT - - ' o

Right ALT o : oo
Left AM GA G= key on sonme keyboards . o
R ght AM GA :

N oA~ wbhNh-E O

If a bit is set to a one,, then the associated button has been held down
by the user.

IKPU$ (n) (function to input n
characters into a string)

I NPUTS enters n characters straight from the keyboard, waiting for each
one in turn. As with INKEYt, these characters a.re not schoed onto the
screen.

x$ is a string variable which will be loaded with your new
characters, n holds the nunber of characters to be entered. Exanples

Cear Key s Print "Type In Then Characters"”
CH=I NPUT*(10) s Print "You entered "; C

This insturction Knot* the sane as the standard |NPUT comrand,, The two
instuctions are conpletely different,, Al so note that there's a special

version of | NPUT* which can be used to read your characters from the
di sC, . LT e

WAIT KEY(wait for a keypress) e
WAIT KEY

Waits for a single keypress.

KEYSPEED(changekeyrepeatspeed) ;-.."s :
KEY SPEED |ag,speed - ' . o o T

KEY SPEED lets you tailor the speed of the keyboard to your own

251

—h -

PRy S PR —

-

R i TR

it o b A Ll S

e ot e S

[R

et b g A Rt Ve &t ks St

s

._a_*

particular taste. The new speed will be used for every part of the AMOS
system including the editor,

"lag" -is the time in 50th of a second between pressing a key, and the
start of the repeat sequence. ' ' :

"sDeed" is the delay of second between each successive character.

CLEAR KEY (initialise keyboard buffer)
CLEAR KEY . I TP

Whomever you enter a character from the keyboard;, its Ascii code is
placed in an area of nenory known as the keyboard buffer- It is this
buffer that is sampled by the INKEY* function to get your key presses. -

CLEAR key erases this buffer conpletely, and returns your keyboard to
this original state. It's especially helpful at the start of a program
as the buffer may well be full of unwanted information. You can also
call it imediately before a WAIT KEY comand to ensure that the program
waitsforafreshkeypressbef orepreceding.

PUT KEY (Put a string into the keyboard buffer)
PUT KEY a$. ' . " S YR

Loads a string a characters directly into the kéyboard buffer,, Carri a"ge
returns can be included using a CHR$(13) character.

The most comon use of PUT KEY is to set up defaults for your input
routines,, Here's a demonstration:

Do - b ol .V

Put Key "W"

I nput "Another Gne':; A$ T

It A$="No" Then Exit' S
Loop . '

| nput/ Qut put

INPUT (load a value from the user and 3
put it a variable) :

| NPUT

Provides you with a standard way of ehtering information into one or
more variables. There are two possible formats for this instrucion:

INPUT warsl gl

Enters a list of variables directly from the keyboard., "var" can
contain any set of variables you like,, separated by commas,. A question
mark will be automatically displayed at the current cursor position.

I NPUT "Pronpt";variable list[;3

252

v e

S AT WO T R S

et e T A

.

et = et oy
e -

e X R R Y

S

Prints out the "pronpt" string before entaring your information. Note
that you must always place a seni-colon between your text and the
variable list. You are *not* allowed to use a comma for this purpose,.

The optional semi-colon ";'" at the end of your variable |ist

specifies that the text cursor will not be affected by the INFUT

instruction, and will retain its original position after the data has
been entered» _ : o .

Wien you execute one of these commands,, Basic will wait for you enter
the required information from the keyboard,, Each variable in your Ilist
nmust be matched by a single value from the user,, These val ues nust be
of the same as your original values, and should be separated by comras,

LINE INPUT (input a list of .
vari abl es separated by a Return)

LINE INPUT "Pronmpt" "variable].ist[;]

Line input is exactly sane as | NPUT, except that it uses a Return
instead of a conma to separate each value you enter from the keyboard.,

253

- — — mnfn

e o =

iy i, ek de = ¢ ana s b

P

19s OTHER COMMANDS

PRINT [?

(print a list of variables to the screen)

PRI NT itens *

The PRINT instruction displays sone information on the screen,, starting
from the current cursor position. '

Each el ement in your list must be separated by either sem -colon or a
conma. A semi-colon prints the data imediately after the previous

" value, whereas a comma first noves the cursor to the next TAB position

on the screen.

Normally the cursor will be advanced downwards by a singl e line after
each PRINT instruction. This can be suppressed by adding a separator
after the print. . '

PRI NT 10, 20*i 0, "Hel "5
PRINT "l p"

o« USING (formatted out put)
PRI NT USI NG format*5variable 1ist

The USING statenment is used in conjunction with PRINT to provied fine
control over the format of your printed output.

format$ specifies a list of characters which defines the way your
variables will be displayed on the screen. Any normal text in this
string will be printed directly, but if you include one of the
characters ""S+-.;" then one of a range of useful formatting operations
will be perforned.

"" Formats a sting variable,. Every "" is replaced by a single character
fromyour output string, taken .fromleft to right.

PRINT USING "This is a"" ~- denonstration of USING'; "Small"
8 Each hash character specifies a single digit to be printed out from

your cariable,. Any unused digits in this list will be automatically
repl aced by spaces.

+ Adds a plus sign to a nunber if its positive, and a mnus mnus
sign if it's negative,

PRINT USING "+«tt";10 5 PRINT USING "+«it";-10 O _—

- Only includes a sign if the nunber is negative,, Positive nunbers
are preceded by a space,,

-

. Places a decimal point in the nunber,, and centres it neatly on the
screen, . ?

; Centres a nunber but doesn't output a decimal point.

Prints out a nunmber in exponential form.

254

255

e

=Y

e Rt e+ s e et e e el

BRINT USING "Here is a number *'; 12345.678

RH / ' (comment)
REif comment

The REM statenents is'used to add comments to your Basic program. Any

t ext t'yped in after a REM staterment will be conpletely ignored by AMio
Basi c. : :

REM This is a coment
' this is a coment.

So, a quote nmark "'" can also be used, but it *must* be placed at the
absol ute beginning of the I|ine.

DATA (place a list of data itens ' _ 256
selene. in a AMOS Basic program) '

The DATA statenent allows you to incorporate whole lists of useful

information directly inside a Basic program This data can be

subsequently | oaded into one or nore variables using the READ :
instruction. Each variable in your list is separatedtay a single coma. -

DATA 1,2,3,"Hell 0"

Unli ke nost other Basics, the AMOS version of this instruction also

lets you include expression s as part of your data. So the follow ng
lines of code a.re equally acceptabl e:

DATA $FF50, , $890

DATA miiilillili,,~1101010101
DATA A

Label s Data A+3/2.0-Sin(B)
Data "Hel | 0" és+"There"

It's inportant to realise that the "A'" at LABEL will be input as the
contents of variable A and not the character A, The expression wll be

eval uated automatically during the READ operation using the 3. as test
val ues of A and B.

Al'so note that each DATA instruction nust be the only statenent on
thecurrent 1ine. Anyt hi ngaf tert hi scoomandwi 11betotallyignored!
Data statements can be placed anywhere in your Basic program However.,

any data you store inside an AMOS procedure will not be accessible from
themainprogran»>,

READ (read sone data a DATA
« ' 7 statement into a variable)

READ |ist of variables R

Loads sonme informatoin stored in a DATA statenent into a list of

vari abl es. READ uses a special marker to determine the l|ocation of the
next piece of data to be entered. At the start of your program the
marker is noved to the first itemof the first DATA statement. Once
this item has been read, the nmarker is advanced so that it points to
the next itemin your list,, As you mght expect, the variables you read

T il

nust be exactly the same type as the data held at the current position,
B xanples

T=10 o

Read A$, B, C, D$ a
! Print At,B,C, D* -
Data "String" ,2, T*20+rnd(100), " AMOS " -i-"3asic:"

RESTCRE-. (set the current READ pointer) B A
RESTORE Label
RESTORE LABEL* _
RESTORE Li ne RESTORE changes the point at which a subsequent
RESTORE number READ operation will expect to find the next DATA

statement. Each AMOS procedure has its own
i ndividual data pointer. So any calls to this comand wil only apply
to the ~current* procedure!

"l'abel" is a label which specifies the position of the first DATA
statement to be read. This label name can be calculated as part of an :
expression. Thef ollowingBasiccomandsar eper feclly legals

- RESTORE .

RESTORE ''L"+"A"+"e"+ME"+"L"
Simlarly, line selects the line number of the next DATA statement-
Like "label™ it can be entered as an expressions

.+ RESTORE TEST+2

By allowing you to junp at will through the DATA statements in your
program RESTORE lets you choose your information depending on the
actions of the user,, Each room of an adventure,, for instance, could
have its description stored in a list of sinple DATA statements,, To
read this description you could use something |ikes

Restore ROOM5+1.000 :: Rem Each R)0I1 has 5 data statenments
-+ Read DESC$ s Print DESC$

Cbviously, if a data statement does not exist at the line specified by
RESTORE, and appropriate error message will be generated. Beware of
trying to use this command inside a procedure,, In order to work, your
DATA statements # 1UST# be within the current procedure.

WAIT (wait in SOhs of a second) | 258
VAIT n
Suspends an AMOS Basic program for n/50 of a second,, Any functions

which use interrupts, such as WOVE and MUSIC, wll continue to work as
normalduringthisperiod,,

=TIHER= (count in SOths of a second)

v=T| MER
TI MER=v

i

i
i
|
i
I
I
|
i

TiiER is a reserved variable which is incremented by 1 every 50th of a
second- It's commonly used to set the seed of the random nunber

generator like sos
Randomi ze Ti ner

NOT (I ogical NOT operation)
v=NOT(d)
This function changes s'jery binary digit in a nunber froma 1 to a O
and vice versa- Since True=-3. (”11.1.1111111111) in binary and F& se=Q,
NOT (True) -~ Fal se,, Exanpl e!:
" Print Bi n$(Not (?il0105.,4)

(results 0101)
If Not(True)==Fal se Then Print "False"

TRUE (Il ogical TRUE)

v=TRUE e
Wienever a test is made such as X1(),, a value is produced. If the
condition is true then this nunber is set to -1, otherwise it wll be
zero.

. If -1 Then Print "Mnus 1. |Is TRUE"

" If TURE Then Print "and TRUE Is ":;TRE

e FALSE (logical FALSE) - 257

VAFALSE

Returns a value of zero. This is used by all the conditional operations
such as IF,, . THEN and REPEAT. . .UNTIL to represent FALSE.

- Print FALSE
(result s 0)

